Caulobacter hibisci sp. nov., isolated from rhizosphere of Hibiscus syriacus L. (Mugunghwa flower)

Int J Syst Evol Microbiol. 2017 Sep;67(9):3167-3173. doi: 10.1099/ijsem.0.002021. Epub 2017 Sep 4.

Abstract

A Gram-stain-negative, smooth, bright yellow-pigmented, aerobic, catalase- and oxidase-positive and rod-shaped bacterial strain was isolated from rhizosphere of Hibiscus syriacus L. (Mugunghwa flower) located in Kyung Hee University, Yongin, Gyeonggi, South Korea. Cells were dimorphic, non-motile or non-stalked, and motile by means of peritrichous flagellum. The strain, named THG-AG3.4T, grew at 15-35 °C, at pH 6.5-9.0 and in the presence of 0-1.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain THG-AG3.4T was most closely related to Caulobacter segnis ATCC 21756T (98.64 % similarity), Caulobacter vibrioides CB51T (98.57 %) and Caulobacter henricii ATCC 15253T (97.41 %). The DNA G+C content of strain THG-AG3.4T was 64.0 mol%. In DNA-DNA hybridization, the DNA-DNA relatedness between strain THG-AG3.4T and its closest phylogenetic neighbour was below 55.0 %. The predominant isoprenoid quinone detected in strain THG-AG3.4T was ubiquinone-10 (Q-10). The major polar lipids were found to be an unidentified lipid, two unidentified phosphoglycolipids, five unidentified glycolipids, eight unidentified aminolipids and phosphatidylglycerol. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Thus, based on the report of the phenotypic, genotypic and phylogenetic characterization of strain THG-AG3.4T, it has been concluded that the isolate represents a novel species of the genus Caulobacter, for which the name Caulobacter hibisci sp. nov. is proposed. The type strain is THG-AG3.4T (=KACC 18849T=CCTCC AB 2016077T).

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • Caulobacter / classification*
  • Caulobacter / genetics
  • Caulobacter / isolation & purification
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Glycolipids / chemistry
  • Hibiscus / microbiology*
  • Nucleic Acid Hybridization
  • Phospholipids / chemistry
  • Phylogeny*
  • Pigmentation
  • RNA, Ribosomal, 16S / genetics
  • Republic of Korea
  • Rhizosphere*
  • Sequence Analysis, DNA
  • Soil Microbiology*
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Glycolipids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Ubiquinone
  • Ubiquinone Q2