Endogenous RGS14 is a cytoplasmic-nuclear shuttling protein that localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus

PLoS One. 2017 Sep 21;12(9):e0184497. doi: 10.1371/journal.pone.0184497. eCollection 2017.

Abstract

Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity important for hippocampal learning and memory. However, to date, little is known about the subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14 ectopically overexpressed in unnatural host cells. Here, we report for the first time a comprehensive assessment of the subcellular distribution and dynamic localization of endogenous RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumination microscopy, we find that endogenous RGS14 localizes to subcellular compartments not previously recognized in studies of recombinant RGS14. RGS14 localization was observed most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes (NPC) on both sides of the nuclear envelope and within intranuclear membrane channels, and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells; however, the protein could be trafficked to the plasma membrane from juxtanuclear membranes in endosomes derived from ER/Golgi, following constitutive activation of endogenous RGS14 G protein binding partners using AlF4¯. Finally, our findings show that endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what has been shown previously for recombinant RGS14. Taken together, the findings highlight possible cellular roles for RGS14 not previously recognized that are distinct from the regulation of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in the nucleus.

MeSH terms

  • Animals
  • Biological Transport / physiology
  • Brain / cytology
  • Brain / metabolism
  • COS Cells
  • Cell Cycle / physiology
  • Cell Line, Tumor
  • Cell Nucleus / metabolism*
  • Chlorocebus aethiops
  • Chromatin / metabolism*
  • Cytoplasm / metabolism*
  • HEK293 Cells
  • Humans
  • Imaging, Three-Dimensional
  • Mice
  • Microscopy, Confocal
  • Neurons / cytology
  • Neurons / metabolism
  • Nuclear Envelope / metabolism*
  • RGS Proteins / metabolism*
  • Rats

Substances

  • Chromatin
  • RGS Proteins
  • Rgs14 protein, rat