Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom

J Biol Chem. 2018 Feb 2;293(5):1536-1549. doi: 10.1074/jbc.RA117.000125. Epub 2017 Dec 18.

Abstract

Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent.

Keywords: Gram-negative bacteria; antimicrobial peptide (AMP); atomic force microscopy (AFM); bacterial membrane disruption; bactericidal mechanism; confocal microscopy; surface plasmon resonance (SPR); time-resolved flow cytometry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Cell Membrane Permeability / drug effects*
  • Cell Membrane* / chemistry
  • Cell Membrane* / metabolism
  • Crotalid Venoms* / chemistry
  • Crotalid Venoms* / pharmacology
  • Crotalus*
  • Escherichia coli* / chemistry
  • Escherichia coli* / metabolism
  • Peptide Fragments* / chemistry
  • Peptide Fragments* / pharmacology
  • Pseudomonas aeruginosa* / chemistry
  • Pseudomonas aeruginosa* / metabolism
  • Surface Plasmon Resonance

Substances

  • Anti-Bacterial Agents
  • Crotalid Venoms
  • Peptide Fragments
  • crotalicidin

Associated data

  • PDB/2MWT