Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle

Acta Physiol (Oxf). 2018 Jun;223(2):e13045. doi: 10.1111/apha.13045. Epub 2018 Feb 27.

Abstract

Aim: This study explored the effects of blood flow restriction (BFR) on mRNA responses of PGC-1α (total, 1α1, and 1α4) and Na+ ,K+ -ATPase isoforms (NKA; α1-3 , β1-3 , and FXYD1) to an interval running session and determined whether these effects were related to increased oxidative stress, hypoxia, and fibre type-specific AMPK and CaMKII signalling, in human skeletal muscle.

Methods: In a randomized, crossover fashion, 8 healthy men (26 ± 5 year and 57.4 ± 6.3 mL kg-1 min-1 ) completed 3 exercise sessions: without (CON) or with blood flow restriction (BFR), or in systemic hypoxia (HYP, ~3250 m). A muscle sample was collected before (Pre) and after exercise (+0 hour, +3 hours) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I and II fibres.

Results: Muscle hypoxia (assessed by near-infrared spectroscopy) was matched between BFR and HYP, which was higher than CON (~90% vs ~70%; P < .05). The mRNA levels of FXYD1 and PGC-1α isoforms (1α1 and 1α4) increased in BFR only (P < .05) and were associated with increases in indicators of oxidative stress and type I fibre ACC Ser221 /ACC ratio, but dissociated from muscle hypoxia, lactate, and CaMKII signalling.

Conclusion: Blood flow restriction augmented exercise-induced increases in muscle FXYD1 and PGC-1α mRNA in men. This effect was related to increased oxidative stress and fibre type-dependent AMPK signalling, but unrelated to the severity of muscle hypoxia, lactate accumulation, and modulation of fibre type-specific CaMKII signalling.

Keywords: AMP-activated protein kinase; Na+-K+-ATPase; PGC-1α; blood flow restriction; oxidative stress; reactive oxygen species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / metabolism*
  • Adult
  • Exercise / physiology
  • Humans
  • Male
  • Membrane Proteins / genetics*
  • Muscle, Skeletal / blood supply*
  • Muscle, Skeletal / metabolism
  • Oxidative Stress / physiology*
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics*
  • Phosphoproteins / genetics*
  • Protein Isoforms / metabolism
  • RNA, Messenger / metabolism
  • Running
  • Transcription Factors / metabolism
  • Young Adult

Substances

  • Membrane Proteins
  • PPARGC1A protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Phosphoproteins
  • Protein Isoforms
  • RNA, Messenger
  • Transcription Factors
  • phospholemman
  • AMP-Activated Protein Kinases