Effects of xylanase supplementation to wheat-based diets on growth performance, nutrient digestibility and gut microbes in weanling pigs

Asian-Australas J Anim Sci. 2018 Sep;31(9):1491-1499. doi: 10.5713/ajas.17.0867. Epub 2018 Mar 13.

Abstract

Objective: This study was designed to investigate the effects of an Aspergillus sulphureus xylanase expressed in Pichia pastoris on the growth performance, nutrient digestibility and gut microbes in weanling pigs.

Methods: A total of 180 weanling pigs (initial body weights were 8.47±1.40 kg) were assigned randomly to 5 dietary treatments. Each treatment had 6 replicates with 6 pigs per replicate. The experimental diets were wheat based with supplementation of 0, 500, 1,000, 2,000, and 4,000 U xylanase/kg. The experiment lasted 28 days (early phase, d 0 to 14; late phase, d 15 to 28).

Results: In the early phase, compared to the control, average daily gain (ADG) was higher for pigs fed diets supplemented with xylanase and there was a quadratic response in ADG (p<0.05). In the entire phase, ADG was higher for the pigs fed 1,000 or 2,000 U/kg xylanase compared to the control (p<0.05). The gain to feed ratio was higher for pigs fed diets supplemented with 1,000 or 2,000 U/kg xylanase compared to the control (p<0.05). Increasing the amount of xylanase improved the apparent total tract digestibility of dry matter, crude protein, neutral detergent fiber, calcium, and phosphorus during both periods (p<0.05). Xylanase supplementation (2,000 U/kg) decreased the proportion of Lachnospiraceae (by 50%) in Firmicutes, but increased Prevotellaceae (by 175%) in Bacteroidetes and almost diminished Enterobacteriaceae (Escherichia-Shigella) in Proteobacteria.

Conclusion: Xylanase supplementation increased growth performance and nutrient digestibility up to 2,000 U/kg. Supplementation of xylanase (2,000 U/kg) decreased the richness of gut bacteria but diminished the growth of harmful pathogenic bacteria, such as Escherichia-Shigella, in the colon.

Keywords: 16s rRNA Sequencing; Bacterial Community Weanling Pigs; Xylanase.