miR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy

Cell Death Dis. 2018 Mar 14;9(3):405. doi: 10.1038/s41419-018-0439-7.

Abstract

MicroRNAs (miRNAs) are known to contribute to many metabolic diseases, including diabetes. In this study, we investigated the role of miR199a-5p in the regulation of hepatic insulin sensitivity. Ad-anti-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice fed a high-fat diet to inhibit miR199a-5p expression before the glucose levels and insulin resistance were assessed. Similarly, Ad-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice to cause the overexpression of miR199a-5p. To investigate the roles of autophagy-related protein 14 (ATG14) and miR199a-5p in the regulation of insulin sensitivity, we injected Ad-miR199a-5p with or without Ad-ATG14 viruses into WT C57BL/6J mice before performing functional assays. Moreover, we infected HepG2 cells or primary hepatocytes with Ad-anti-miR199a-5p or Ad-miR199a-5p viruses to determine the effect of miR199a-5p on insulin resistance in vitro. Finally, we explored the clinical relevance of miR199a-5p by examining the expression level of miR199a-5p in liver samples derived from diabetes patients. We first demonstrated that knocking down miR199a-5p led to decreased glucose tolerance and clearance in vivo, whereas the overexpression of miR199a-5p had the opposite effect. We further identified ATG14 as the target of miR199a-5p, and ATG14 partially rescued miR199a-5p-potentiated glucose and insulin tolerance. In addition, transmission electron microscopy data and western blot data regarding ATG14, LC3 and BECLIN1 illustrated that miR199a-5p regulates autophagy via ATG14. Knocking down miR199a-5p in primary hepatocytes and HepG2 cells suppressed the insulin-stimulated phosphorylation of insulin receptor β, glycogen synthase kinase 3β and protein kinase B, whereas the overexpression of miR199a-5p further potentiated their phosphorylation. Finally, we detected upregulated miR199a-5p levels, which were correlated with reduced ATG14 mRNA levels and downregulated autophagy in liver samples obtained from diabetes patients. Our study uncovered a novel biological role of miR199a-5p in the regulation of hepatic insulin sensitivity via ATG14-mediated autophagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy*
  • Autophagy-Related Proteins / genetics
  • Autophagy-Related Proteins / metabolism*
  • Diabetes Mellitus, Type 2 / genetics
  • Diabetes Mellitus, Type 2 / metabolism*
  • Diabetes Mellitus, Type 2 / physiopathology
  • Glucose / metabolism
  • Hepatocytes / cytology
  • Hepatocytes / metabolism
  • Humans
  • Insulin / metabolism*
  • Liver / cytology
  • Liver / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Receptor, Insulin / genetics
  • Receptor, Insulin / metabolism
  • Vesicular Transport Proteins / genetics
  • Vesicular Transport Proteins / metabolism*

Substances

  • Atg14 protein, mouse
  • Autophagy-Related Proteins
  • Insulin
  • MicroRNAs
  • Mirn199 microRNA, mouse
  • Vesicular Transport Proteins
  • Receptor, Insulin
  • Proto-Oncogene Proteins c-akt
  • Glucose