Predicting miRNA-disease association based on inductive matrix completion

Bioinformatics. 2018 Dec 15;34(24):4256-4265. doi: 10.1093/bioinformatics/bty503.

Abstract

Motivation: It has been shown that microRNAs (miRNAs) play key roles in variety of biological processes associated with human diseases. In Consideration of the cost and complexity of biological experiments, computational methods for predicting potential associations between miRNAs and diseases would be an effective complement.

Results: This paper presents a novel model of Inductive Matrix Completion for MiRNA-Disease Association prediction (IMCMDA). The integrated miRNA similarity and disease similarity are calculated based on miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity. The main idea is to complete the missing miRNA-disease association based on the known associations and the integrated miRNA similarity and disease similarity. IMCMDA achieves AUC of 0.8034 based on leave-one-out-cross-validation and improved previous models. In addition, IMCMDA was applied to five common human diseases in three types of case studies. In the first type, respectively, 42, 44, 45 out of top 50 predicted miRNAs of Colon Neoplasms, Kidney Neoplasms, Lymphoma were confirmed by experimental reports. In the second type of case study for new diseases without any known miRNAs, we chose Breast Neoplasms as the test example by hiding the association information between the miRNAs and Breast Neoplasms. As a result, 50 out of top 50 predicted Breast Neoplasms-related miRNAs are verified. In the third type of case study, IMCMDA was tested on HMDD V1.0 to assess the robustness of IMCMDA, 49 out of top 50 predicted Esophageal Neoplasms-related miRNAs are verified.

Availability and implementation: The code and dataset of IMCMDA are freely available at https://github.com/IMCMDAsourcecode/IMCMDA.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Colonic Neoplasms / genetics
  • Esophageal Neoplasms / genetics
  • Genetic Predisposition to Disease*
  • Humans
  • MicroRNAs* / genetics
  • Models, Genetic*

Substances

  • MicroRNAs