Face Detection With Different Scales Based on Faster R-CNN

IEEE Trans Cybern. 2019 Nov;49(11):4017-4028. doi: 10.1109/TCYB.2018.2859482. Epub 2018 Aug 14.

Abstract

In recent years, the application of deep learning based on deep convolutional neural networks has gained great success in face detection. However, one of the remaining open challenges is the detection of small-scaled faces. The depth of the convolutional network can cause the projected feature map for small faces to be quickly shrunk, and most detection approaches with scale invariant can hardly handle less than 15×15 pixel faces. To solve this problem, we propose a different scales face detector (DSFD) based on Faster R-CNN. The new network can improve the precision of face detection while performing as real-time a Faster R-CNN. First, an efficient multitask region proposal network (RPN), combined with boosting face detection, is developed to obtain the human face ROI. Setting the ROI as a constraint, an anchor is inhomogeneously produced on the top feature map by the multitask RPN. A human face proposal is extracted through the anchor combined with facial landmarks. Then, a parallel-type Fast R-CNN network is proposed based on the proposal scale. According to the different percentages they cover on the images, the proposals are assigned to three corresponding Fast R-CNN networks. The three networks are separated through the proposal scales and differ from each other in the weight of feature map concatenation. A variety of strategies is introduced in our face detection network, including multitask learning, feature pyramid, and feature concatenation. Compared to state-of-the-art face detection methods such as UnitBox, HyperFace, FastCNN, the proposed DSFD method achieves promising performance on popular benchmarks including FDDB, AFW, PASCAL faces, and WIDER FACE.