Study of Ni-Catalyzed Graphitization Process of Diamond by in Situ X-ray Photoelectron Spectroscopy

J Phys Chem C Nanomater Interfaces. 2018 Mar 29;122(12):6629-6636. doi: 10.1021/acs.jpcc.7b12334. Epub 2018 Mar 12.

Abstract

Graphene on diamond has been attracting considerable attention due to the unique and highly beneficial features of this heterostructure for a range of electronic applications. Here, ultrahigh-vacuum X-ray photoelectron spectroscopy is used for in situ analysis of the temperature dependence of the Ni-assisted thermally induced graphitization process of intrinsic nanocrystalline diamond thin films (65 nm thickness, 50-80 nm grain size) on silicon wafer substrates. Three major stages of diamond film transformation are determined from XPS during the thermal annealing in the temperature range from 300 °C to 800 °C. Heating from 300 °C causes removal of oxygen; formation of the disordered carbon phase is observed at 400 °C; the disordered carbon progressively transforms to graphitic phase whereas the diamond phase disappears from the surface from 500 °C. In the well-controllable temperature regime between 600 °C and 700 °C, the nanocrystalline diamond thin film is mainly preserved, while graphitic layers form on the surface as the predominant carbon phase. Moreover, the graphitization is facilitated by a disordered carbon interlayer that inherently forms between diamond and graphitic layers by Ni catalyst. Thus, the process results in formation of a multilayer heterostructure on silicon substrate.