Stable Hierarchical Bimetal-Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction

Angew Chem Int Ed Engl. 2019 Mar 22;58(13):4227-4231. doi: 10.1002/anie.201813634. Epub 2019 Feb 18.

Abstract

The integration of heterometallic units and nanostructures into metal-organic frameworks (MOFs) used for the oxygen evolution reaction (OER) can enhance the electrocatalytic performance and help elucidate underlying mechanisms. We have synthesized a series of stable MOFs (CTGU-10a1-d1) based on trinuclear metal carboxylate clusters and a hexadentate carboxylate ligand with a (6,6)-connected nia net. We also present a strategy to synthesize hierarchical bimetallic MOF nanostructures (CTGU-10a2-d2). Among these, CTGU-10c2 is the best material for the OER, with an overpotential of 240 mV at a current density of 10 mA cm-2 and a Tafel slope of 58 mV dec-1 . This is superior to RuO2 and confirms CTGU-10c2 as one of the few known high-performing pure-phase MOF-OER electrocatalysts. Notably, bimetallic CTGU-10b2 and c2 show an improved OER activity over monometallic CTGU-10a2 and d2. Both DFT and experiments show that the remarkable OER performance of CTGU-10c2 is due to the presence of unsaturated metal sites, a hierarchical nanobelt architecture, and the Ni-Co coupling effect.

Keywords: bimetal-organic nanosheets; hierarchical nanostructures; metal-organic frameworks; oxygen evolution reaction.