Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide

J Am Chem Soc. 2019 Mar 27;141(12):4839-4848. doi: 10.1021/jacs.8b11939. Epub 2019 Mar 13.

Abstract

In the age of failing small-molecule antibiotics, tapping the near-infinite structural and chemical repertoire of antimicrobial peptides (AMPs) offers one of the most promising routes toward developing next-generation antibacterial compounds. One of the key impediments en route is the lack of methodologies for systematic rational design and optimization of new AMPs. Here we present a new simulation-guided rational design approach and apply it to develop a potent new AMP. We show that unbiased atomic detail molecular dynamics (MD) simulations are able to predict structures formed by evolving peptide designs enabling structure-based rational fine-tuning of functional properties. Starting from a 14-residue poly leucine template we demonstrate the design of a minimalistic potent new AMP. Consisting of only four types of amino acids (LDKA), this peptide forms large pores in microbial membranes at very low peptide-to-lipid ratios (1:1000) and exhibits low micromolar activity against common Gram-positive and Gram-negative pathogenic bacteria. Remarkably, the four amino acids were sufficient to encode preferential poration of bacterial membranes with negligible damage to red blood cells at bactericidal concentrations. As the sequence is too short to span cellular membranes, pores are formed by stacking of channels in each bilayer leaflet.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antimicrobial Cationic Peptides / chemistry*
  • Drug Design*
  • Microbial Sensitivity Tests
  • Molecular Dynamics Simulation
  • Porosity
  • Protein Conformation

Substances

  • Antimicrobial Cationic Peptides