Production of Nanocellulose Using Hydrated Deep Eutectic Solvent Combined with Ultrasonic Treatment

ACS Omega. 2019 May 15;4(5):8539-8547. doi: 10.1021/acsomega.9b00519. eCollection 2019 May 31.

Abstract

Pretreatment approaches are highly desirable to improve the commercial viability of nanocellulose production. In this study, we propose a new approach to mass produce nanocellulose using a hydrated choline chloride/oxalic acid dihydrate deep eutectic solvent (DES) combined with an ultrasonic process. The hydrogen bond acidity, polarizability, and solvation effect reflected by the Kamlet-Taft solvatochromic parameters did not decrease even after the addition of large amounts of water. Instead, the water facilitated the ionization of H+ and delocalization of Cl- ions, forming new Cl-H2O ionic hydrogen and oxalate-H2O hydrogen bonds, which are critical for improving the solvent characteristics. One pass of kraft pulp through the hydrated DESs (80 °C, 1 h) was sufficient to dissociate the kraft pulp into cellulose nanofibers or cellulose nanocrystals using an 800 W ultrasonic treatment. The present study represents an alternative route for the kraft pulp pretreatment and the large-scale production of nanocellulose.