Myristica fragrans bio-active ester functionalized ZnO nanoparticles exhibit antibacterial and antibiofilm activities in clinical isolates

J Microbiol Methods. 2019 Nov:166:105716. doi: 10.1016/j.mimet.2019.105716. Epub 2019 Sep 6.

Abstract

We provide a novel one-step/one-pot bio-inspired method of synthesis for Myristica fragrans leaf ester (MFLE) capped‑zinc oxide nanoparticles (MFLE-ZnONPs). Antibacterial and antbiofilm efficacies of MFLE-ZnONPs were tested against the multi-drug resistant (MDR) Escherichia coli (E. coli-336), methicillin-resistant Staphylococcus aureus (MRSA-1) and methicillin-sensitive (MSSA-2) clinical isolates. Antibacterial screening using well diffusion assay revealed the cytotoxicity of MFLE-ZnONPs in the range of 500-2000 μg/ml. MFLE-ZnONPs significantly increased the zone of growth inhibition of E. coli-336 (17.0 ± 0.5 to 19.25 ± 1.0 mm), MSSA-2 (16.75 ± 0.8 to 19.0 ± 0.7 mm) and MRSA-1 (16.25 ± 1.0 to 18.25 ± 0.5 mm), respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC) against E. coli-336, MRSA-1 and MSSA-2 were found to be 1500, 1000 and 500 μg/ml, and 2500, 2000 and 1500 μg/ml, respectively. A time and dose dependent reduction in the cell proliferation were also found at the respective MICs of tested strains. Scanning electron microscopy (SEM) of MFLE-ZnONPs-treated strains exhibited cellular damage via loss of native rod and coccoid shapes because of the formation of pits and cavities. E. coli-336 and MRSA-1 strains at their MICs (1500 and 1000 μg/ml) sharply reduced the biofilm production to 51% and 24%. The physico-chemical characterization via x-ray diffraction (XRD) ascertained the crystallinity and an average size of MFLE-ZnONPs as 48.32 ± 2.5 nm. Gas chromatography-mass spectroscopy (GC-MS) analysis of MFLE-ZnONPs unravelled the involvement of two bio-active esters (1) butyl 3-oxobut-2-yl ester and (2) α-monoolein) as surface capping/stabilizing agents. Fourier transform infrared (FTIR) analysis of MFLE and MFLE-ZnONPs showed the association of amines, alkanes, aldehydes, amides, carbonyl and amines functional groups in the corona formation. Overall, our data provide novel insights on the rapid development of eco-friendly, cost-effective bio-synthesis of MFLE-ZnONPs, showing their putative application as nano-antibiotics against MDR clinical isolates.

Keywords: Antibiofilm; Esters capped-ZnO; GC–MS; M. fragrans bio-actives.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Biofilms / drug effects
  • Escherichia coli / drug effects
  • Esters / pharmacology*
  • Metal Nanoparticles / chemistry*
  • Methicillin-Resistant Staphylococcus aureus / drug effects
  • Myristica / metabolism*
  • Plant Extracts / pharmacology*
  • Plant Leaves / metabolism
  • Zinc Oxide / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Esters
  • Plant Extracts
  • Zinc Oxide