Conserved CxnC Motifs in Kaposi's Sarcoma-Associated Herpesvirus ORF66 Are Required for Viral Late Gene Expression and Are Essential for Its Interaction with ORF34

J Virol. 2020 Jan 6;94(2):e01299-19. doi: 10.1128/JVI.01299-19. Print 2020 Jan 6.

Abstract

Late gene transcription in the beta- and gammaherpesviruses depends on a set of virally encoded transcriptional activators (vTAs) that hijack the host transcriptional machinery and direct it to a subset of viral genes that are required for completion of the viral replication cycle and capsid assembly. In Kaposi's sarcoma-associated herpesvirus (KSHV), these vTAs are encoded by ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. Assembly of the vTAs into a complex is critical for late gene transcription, and thus, deciphering the architecture of the complex is central to understanding its transcriptional regulatory activity. Here, we generated an ORF66-null virus and confirmed that it fails to produce late genes and infectious virions. We show that ORF66 is incorporated into the vTA complex primarily through its interaction with ORF34, which is dependent upon a set of four conserved cysteine-rich motifs in the C-terminal domain of ORF66. While both ORF24 and ORF66 occupy the canonical K8.1 late gene promoter, their promoter occupancy requires the presence of the other vTAs, suggesting that sequence-specific, stable binding requires assembly of the entire complex on the promoter. Additionally, we found that ORF24 expression is impaired in the absence of a stable vTA complex. This work extends our knowledge about the architecture of the KSHV viral preinitiation complex and suggests that it functions as a complex to recognize late gene promoters.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is an oncogenic gammaherpesvirus that is the causative agent of multiple human cancers. The release of infectious virions requires the production of capsid proteins and other late genes, whose production is transcriptionally controlled by a complex of six virally encoded proteins that hijack the host transcription machinery. It is poorly understood how this complex assembles or what function five of its six components play in transcription. Here, we demonstrate that ORF66 is an essential component of this complex in KSHV and that its inclusion in the complex depends upon its C-terminal domain, which contains highly conserved cysteine-rich motifs reminiscent of zinc finger motifs. Additionally, we examined the assembly of the viral preinitiation complex at late gene promoters and found that while sequence-specific binding of late gene promoters requires ORF24, it additionally requires a fully assembled viral preinitiation complex.

Keywords: Kaposi’s sarcoma-associated herpesvirus; gammaherpesvirus; late gene; transcriptional activator.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Gene Expression Regulation, Viral / physiology*
  • HEK293 Cells
  • Herpesvirus 8, Human / genetics
  • Herpesvirus 8, Human / metabolism*
  • Humans
  • Open Reading Frames*
  • Promoter Regions, Genetic*
  • Protein Domains
  • Viral Proteins / genetics
  • Viral Proteins / metabolism*

Substances

  • Viral Proteins