Connexin43 peptide, TAT-Cx43266-283, selectively targets glioma cells, impairs malignant growth, and enhances survival in mouse models in vivo

Neuro Oncol. 2020 Apr 15;22(4):493-504. doi: 10.1093/neuonc/noz243.

Abstract

Background: Malignant gliomas are the most frequent primary brain tumors and remain among the most incurable cancers. Although the role of the gap junction protein, connexin43 (Cx43), has been deeply investigated in malignant gliomas, no compounds have been reported with the ability to recapitulate the tumor suppressor properties of this protein in in vivo glioma models.

Methods: TAT-Cx43266-283 a cell-penetrating peptide which mimics the effect of Cx43 on c-Src inhibition, was studied in orthotopic immunocompetent and immunosuppressed models of glioma. The effects of this peptide in brain cells were also analyzed.

Results: While glioma stem cell malignant features were strongly affected by TAT-Cx43266-283, these properties were not significantly modified in neurons and astrocytes. Intraperitoneally administered TAT-Cx43266-283 decreased the invasion of intracranial tumors generated by GL261 mouse glioma cells in immunocompetent mice. When human glioma stem cells were intracranially injected with TAT-Cx43266-283 into immunodeficient mice, there was reduced expression of the stemness markers nestin and Sox2 in human glioma cells at 7 days post-implantation. Consistent with the role of Sox2 as a transcription factor required for tumorigenicity, TAT-Cx43266-283 reduced the number and stemness of human glioma cells at 30 days post-implantation. Furthermore, TAT-Cx43266-283 enhanced the survival of immunocompetent mice bearing gliomas derived from murine glioma stem cells.

Conclusion: TAT-Cx43266-283 reduces the growth, invasion, and progression of malignant gliomas and enhances the survival of glioma-bearing mice without exerting toxicity in endogenous brain cells, which suggests that this peptide could be considered as a new clinical therapy for high-grade gliomas.

Keywords: Src; cell-penetrating peptides; connexin; glioma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Neoplasms* / drug therapy
  • Cell Line, Tumor
  • Connexin 43
  • Disease Models, Animal
  • Glioma* / drug therapy
  • Mice
  • Peptides

Substances

  • Connexin 43
  • Peptides

Grants and funding