mDia1/3-dependent actin polymerization spatiotemporally controls LAT phosphorylation by Zap70 at the immune synapse

Sci Adv. 2020 Jan 1;6(1):eaay2432. doi: 10.1126/sciadv.aay2432. eCollection 2020 Jan.

Abstract

The mechanism by which the cytosolic protein Zap70 physically interacts with and phosphorylates its substrate, the transmembrane protein LAT, upon T cell receptor (TCR) stimulation remains largely obscure. In this study, we found that the pharmacological inhibition of formins, a major class of actin nucleators, suppressed LAT phosphorylation by Zap70, despite TCR stimulation-dependent phosphorylation of Zap70 remaining intact. High-resolution imaging and three-dimensional image reconstruction revealed that localization of phosphorylated Zap70 to the immune synapse (IS) and subsequent LAT phosphorylation are critically dependent on formin-mediated actin polymerization. Using knockout mice, we identify mDia1 and mDia3, which are highly expressed in T cells and which localize to the IS upon TCR activation, as the critical formins mediating this process. Our findings therefore describe previously unsuspected roles for mDia1 and mDia3 in the spatiotemporal control of Zap70-dependent LAT phosphorylation at the IS through regulation of filamentous actin, and underscore their physiological importance in TCR signaling.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Actin Cytoskeleton / drug effects
  • Actin Cytoskeleton / immunology
  • Actins / antagonists & inhibitors
  • Actins / chemistry
  • Actins / genetics
  • Adaptor Proteins, Signal Transducing / genetics*
  • Adaptor Proteins, Signal Transducing / immunology
  • Animals
  • Formins / genetics
  • Formins / immunology*
  • Formins / pharmacology
  • Gene Expression Regulation / drug effects
  • Humans
  • Immune System / drug effects
  • Immune System / metabolism
  • Jurkat Cells / immunology
  • Membrane Proteins / genetics*
  • Membrane Proteins / immunology
  • Mice
  • Mice, Knockout
  • Phosphorylation / drug effects
  • Polymerization / drug effects
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Antigen, T-Cell / immunology
  • Signal Transduction / drug effects
  • ZAP-70 Protein-Tyrosine Kinase / genetics*

Substances

  • Actins
  • Adaptor Proteins, Signal Transducing
  • Diap1 protein, mouse
  • Diap2 protein, mouse
  • Formins
  • LAT protein, human
  • Membrane Proteins
  • Receptors, Antigen, T-Cell
  • ZAP-70 Protein-Tyrosine Kinase