Comparison of nerve growth factor's effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro

J Neurosci Res. 1988 Oct-Dec;21(2-4):352-64. doi: 10.1002/jnr.490210227.

Abstract

In the central nervous system, nerve growth factor (NGF) affects basal forebrain cholinergic neurons during early development and in the adult mammalian brain. These neurons are located in medial septum, diagonal band of Broca, and nucleus basalis of Meynert. While the effects of NGF on the development of septal cholinergic neurons are well documented, only little is known about the influence of NGF on development of cholinergic neurons in the nucleus basalis. In addition to the basal forebrain cholinergic neurons, there are cholinergic interneurons in the corpus striatum, which form an anatomically and functionally distinct population of cholinergic neurons. These striatal interneurons have been reported to respond to NGF during early development; however, it is not known whether the effects of NGF on their development are similar to those on septal cholinergic neurons. We prepared cultures of dissociated cells from fetal rat septum, striatum, and nucleus basalis and investigated the development of cholinergic neurons localized in these three different areas in the presence or absence of NGF. We now report that, first, cholinergic neurons of striatum and nucleus basalis develop a more extensive fiber network and contain more acetylcholinesterase (AChE) per neuron than do cholinergic neurons of septum. The amount of choline acetyltransferase (ChAT) per cholinergic neuron is approximately the same in all three culture types when grown in the absence of NGF. Second, NGF treatment increases and anti-NGF treatment decreases the number of AChE-positive neurons in cultures of low plating density, suggesting that NGF is able to promote survival of cholinergic neurons of all three areas studied. Third, NGF increases the total length of fibers and the number of branching points of cholinergic neurons in septal cultures but not in cultures of striatum and nucleus basalis. Fourth, NGF treatment increases AChE activity in septal but not in nucleus basalis or striatal cultures, suggesting that AChE activity reflects the extent of the fiber network of cholinergic neurons of all areas. Fifth, NGF treatment produces severalfold elevations in ChAT activity in septal cultures and more modest increases in cultures of nucleus basalis and striatum, suggesting that NGF is able to stimulate ChAT activity also in the absence of a stimulatory effect on survival and fiber growth. Our results demonstrate that, during early development, NGF is able to affect survival and differentiation of all three populations of forebrain cholinergic neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetylcholinesterase / metabolism
  • Animals
  • Basal Ganglia / cytology*
  • Basal Ganglia / drug effects
  • Cells, Cultured
  • Choline O-Acetyltransferase / metabolism
  • Cholinergic Fibers / drug effects
  • Cholinergic Fibers / metabolism
  • Cholinergic Fibers / physiology*
  • Corpus Striatum / cytology*
  • Corpus Striatum / drug effects
  • Embryo, Mammalian
  • Immune Sera / pharmacology
  • Nerve Growth Factors / pharmacology*
  • Rats
  • Rats, Inbred Strains
  • Septal Nuclei / cytology*
  • Septal Nuclei / drug effects

Substances

  • Immune Sera
  • Nerve Growth Factors
  • Choline O-Acetyltransferase
  • Acetylcholinesterase