RAF kinase dimerization: implications for drug discovery and clinical outcomes

Oncogene. 2020 May;39(21):4155-4169. doi: 10.1038/s41388-020-1263-y. Epub 2020 Apr 8.

Abstract

The RAF kinases activated by RAS GTPases regulate cell growth and division by signal transduction through the ERK cascade and mutations leading to constitutive activity are key drivers of human tumors, as are upstream activators including RAS and receptor tyrosine kinases. The development of first-generation RAF inhibitors, including vemurafenib (VEM) and dabrafenib led to initial excitement due to high response rates and profound regression of malignant melanomas carrying BRAFV600E mutations. The excitement about these unprecedented response rates, however, was tempered by tumor unresponsiveness through both intrinsic and acquired drug-resistance mechanisms. In recent years much insight into the complexity of the RAS-RAF axis has been obtained and inactivation and signal transduction mechanisms indicate that RAF dimerization is a critical step in multiple cellular contexts and plays a key role in resistance. Both homo- and hetero-dimerization of BRAF and CRAF can modulate therapeutic response and disease progression in patients treated with ATP-competitive inhibitors and are therefore highly clinically significant. Ten years after the definition of the RAF dimer interface (DIF) by crystallography, this review focuses on the implications of RAF kinase dimerization in signal transduction and for drug development, both from a classical ATP-competitive standpoint and from the perspective of new therapeutic strategies including inhibiting dimer formation. A structural perspective of the DIF, how dimerization impacts inhibitor activation and the structure-based design of next-generation RAF kinase inhibitors with unique mechanisms of action is presented. We also discuss potential fields of application for DIF inhibitors, ranging from non-V600E oncoproteins and BRAF fusions to tumors driven by aberrant receptor tyrosine kinase or RAS signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Substitution
  • Drug Discovery*
  • Humans
  • Melanoma* / drug therapy
  • Melanoma* / enzymology
  • Melanoma* / genetics
  • Melanoma* / pathology
  • Mutation, Missense*
  • Protein Kinase Inhibitors / therapeutic use*
  • Protein Multimerization / drug effects*
  • Protein Multimerization / genetics
  • Proto-Oncogene Proteins B-raf* / antagonists & inhibitors
  • Proto-Oncogene Proteins B-raf* / genetics
  • Proto-Oncogene Proteins B-raf* / metabolism
  • Signal Transduction / drug effects*
  • Signal Transduction / genetics
  • ras Proteins / genetics
  • ras Proteins / metabolism

Substances

  • Protein Kinase Inhibitors
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • ras Proteins