MicroRNA-4651 represses hepatocellular carcinoma cell growth and facilitates apoptosis via targeting FOXP4

Biosci Rep. 2020 Jun 26;40(6):BSR20194011. doi: 10.1042/BSR20194011.

Abstract

MicroRNAs (miRNAs) belong to the subgroup of small noncoding RNAs, which typically serve as important gene regulators to participate in different biological events, such as tumor cell growth and apoptosis. Recent studies indicated microRNA-4651 (miR-4651) was involved in hepatocellular carcinoma (HCC) progression. The certain role of miRNA-4651 during the progression of HCC, however, remains unclear. Herein, we investigated the mRNA expression level of miR-4651 in HCC tissues and HCC cell lines and found miR-4651 was noticeably down-regulated compared with the normal liver tissues and QSG-7701 cell line, respectively. Then, miR-4561 overexpression obviously repressed the proliferation and promoted apoptosis in two HCC cell lines. Interestingly, we further identified that miR-4561 could directly interact with FOXP4 in HCC cells by using bio-informatic method and report assay. Moreover, forced expression of FOXP4 showed an opposite effect compared with miR-4561 in HCC cell lines. Hence, our findings strongly indicated that miR-4561 regulated the HCC cell growth and apoptosis mainly through targeting the FOXP4 genes. Clinically, the miR-4561/FOXP4 axis might be a potential target for therapeutic application of HCC patient treatment.

Keywords: FOXP4; apoptosis; hepatocellular carcinoma; miR-4651; proliferation.

MeSH terms

  • Apoptosis
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism*
  • Carcinoma, Hepatocellular / pathology
  • Cell Proliferation*
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism*
  • Gene Expression Regulation, Neoplastic
  • Hep G2 Cells
  • Humans
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism*
  • Liver Neoplasms / pathology
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Signal Transduction

Substances

  • FOXP4 protein, human
  • Forkhead Transcription Factors
  • MIRN4651 microRNA, human
  • MicroRNAs