Identification of Cardiac Expression Pattern of Transient Receptor Potential Vanilloid Type 1 (TRPV1) Receptor using a Transgenic Reporter Mouse Model

Neurosci Lett. 2020 Oct 15:737:135320. doi: 10.1016/j.neulet.2020.135320. Epub 2020 Aug 22.

Abstract

Transient receptor potential vanilloid type 1 (TRPV1) channels are structurally related, non-selective cation channels that exhibit a high permeability to calcium. Sensory nerve endings expressing TRPV1 channels play a prominent role in regulating the cardiac sympathetic afferent reflex and contribute to cardiac remodeling and dysfunction in chronic heart failure. However, the precise expression of TRPV1 channels in cardiomyocytes vs. non-cardiomyocytes remains debated. Here we utilized a tdTomato-GFP reporter mouse crossed with a mouse line expressing Cre recombinase under the control of the TRPV1 promoter to map the TRPV1 expression pattern in heart. In this model, TRPV1-negative cells express tdTomato protein (red), whereas TRPV1-positive cells express GFP protein (green). As we expected, substantial GFP expression was found in many small and medium diameter dorsal root ganglia neurons in heterozygous TRPV1-Cre +/-, tdTomato flox/flox +/- male mice, suggesting that this heterozygous model is sufficient for labeling TRPV1-positive cells. Furthermore, these results showed that GFP green staining was not detectable in cardiomyocytes. Instead, we found strong GFP green staining in cardiac blood vessels-thought to be arterioles-in the heart. We also observed strong GFP signals on PGP9.5-positive cardiac nerve endings in the epicardium. In summary, this study does not support the concept that TRPV1 channels are strongly expressed in mouse cardiomyocytes. We conclude that TRPV1 channels in mouse heart are mostly expressed on non-cardiomyocyte cells including cardiac nerve endings and vessels. These data have important implications for the modulations of cardiogenic reflexes.

Keywords: Autonomic nerve system; Cardiac spinal afferents; Dorsal root ganglia; Resiniferatoxin; tdTomato reporter.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arterioles / metabolism*
  • Ganglia, Spinal / metabolism*
  • Mice
  • Mice, Transgenic
  • Myocardium / metabolism*
  • Myocytes, Cardiac / metabolism
  • TRPV Cation Channels / genetics
  • TRPV Cation Channels / metabolism*

Substances

  • TRPV Cation Channels
  • TRPV1 protein, mouse