M8R tropomyosin mutation disrupts actin binding and filament regulation: The beginning affects the middle and end

J Biol Chem. 2020 Dec 11;295(50):17128-17137. doi: 10.1074/jbc.RA120.014713. Epub 2020 Oct 5.

Abstract

Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin-tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin's reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T's N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin-tropomyosin binding and weaker tropomyosin-actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin-thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.

Keywords: DCM; M8R; cardiac muscle; cardiomyopathy; in vitro motility; molecular dynamics; muscle; tropomyosin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / chemistry*
  • Actin Cytoskeleton / genetics
  • Actin Cytoskeleton / metabolism
  • Actins / chemistry*
  • Actins / genetics
  • Actins / metabolism
  • Amino Acid Substitution
  • Cardiomyopathy, Dilated / genetics*
  • Cardiomyopathy, Dilated / metabolism
  • Circular Dichroism
  • Humans
  • Molecular Dynamics Simulation
  • Mutation, Missense*
  • Tropomyosin / chemistry*
  • Tropomyosin / genetics*
  • Tropomyosin / metabolism

Substances

  • Actins
  • Tropomyosin