Overcoming hypoxia-induced resistance of pancreatic and lung tumor cells by disrupting the PERK-NRF2-HIF-axis

Cell Death Dis. 2021 Jan 13;12(1):82. doi: 10.1038/s41419-020-03319-7.

Abstract

Hypoxia-induced resistance of tumor cells to therapeutic treatment is an unresolved limitation due to poor vascular accessibility and protective cell adaptations provided by a network, including PERK, NRF2, and HIF signaling. All three pathways have been shown to influence each other, but a detailed picture remains elusive. To explore this crosstalk in the context of tumor therapy, we generated human cancer cell lines of pancreatic and lung origin carrying an inducible shRNA against NRF2 and PERK. We report that PERK-related phosphorylation of NRF2 is only critical in Keap1 wildtype cells to escape its degradation, but shows no direct effect on nuclear import or transcriptional activity of NRF2. We could further show that NRF2 is paramount for proliferation, ROS elimination, and radioprotection under constant hypoxia (1% O2), but is dispensable under normoxic conditions or after reoxygenation. Depletion of NRF2 does not affect apoptosis, cell cycle progression and proliferation factors AKT and c-Myc, but eliminates cellular HIF-1α signaling. Co-IP experiments revealed a protein interaction between NRF2 and HIF-1α and strongly suggest NRF2 as one of the cellular key factor for the HIF pathway. Together these data provide new insights on the complex role of the PERK-NRF2-HIF-axis for cancer growth.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Hypoxia / genetics*
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology
  • NF-E2-Related Factor 2 / metabolism*
  • Pancreatic Neoplasms / genetics*
  • Pancreatic Neoplasms / pathology
  • Signal Transduction
  • Transfection

Substances

  • NF-E2-Related Factor 2