An auxiliary binding interface of SHIP2-SH2 for Y292-phosphorylated FcγRIIB reveals diverse recognition mechanisms for tyrosine-phosphorylated receptors involved in different cell signaling pathways

Anal Bioanal Chem. 2022 Jan;414(1):497-506. doi: 10.1007/s00216-021-03373-w. Epub 2021 May 21.

Abstract

SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) plays an essential role in regulating phosphatidylinositol level in human cell, and is recruited to many phosphotyrosine (pY)-dependent signal transduction pathways by the SH2 domain. In immunity signaling, immunoreceptor FcγRIIB binds to SHIP2-SH2 via its Y292-phosphorylated immunoreceptor tyrosine-based inhibitory motif (ITIM) and transmits inhibitory signal, which regulates B cell and neuronal cell activity and is associated with immune diseases and Alzheimer's disease. To date, the interaction between SHIP2 and FcγRIIB has not been analyzed from a structural point of view. Here, the binding of SHIP2-SH2 with Y292-phosphorylated FcγRIIB-ITIM was analyzed using NMR spectroscopy. The results demonstrated that SHIP2-SH2 mainly utilizes two regions including a pY-binding pocket and a specificity pocket formed by βD, βE, and EF-loop, to bind with FcγRIIB-ITIM in high affinity. In addition to the two regions, the BG-loop of SHIP2-SH2 functions as an auxiliary interface enhancing affinity. By comparing the binding of SHIP2-SH2 with ligands from FcγRIIB and c-MET, a hepatocyte growth factor receptor associated with tumorigenesis, significant differences in interface and affinity were found, suggesting that SHIP2-SH2 applies diverse patterns for binding to different ligand proteins. Moreover, S49, S51, and R70 of SHIP2 were identified to mediate the binding of both FcγRIIB and c-MET, while R28 and Q107 were found to only participate in the binding of c-MET and FcγRIIB respectively. Taken together, this study reveals the diverse mechanisms of SHIP2-SH2 for recognizing different ligands, and provides important clues for selectively manipulating various signaling pathways and specific drug design.

Keywords: Biomacromolecule interaction; INPPL1; ITIM; NMR; Tyrosine phosphorylation.

MeSH terms

  • B-Lymphocytes / metabolism
  • Humans
  • Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
  • Phosphoric Monoester Hydrolases* / chemistry
  • Phosphoric Monoester Hydrolases* / metabolism
  • Phosphorylation
  • Receptors, IgG
  • Signal Transduction
  • Tyrosine
  • src Homology Domains*

Substances

  • Fc gamma receptor IIB
  • Receptors, IgG
  • Tyrosine
  • Phosphoric Monoester Hydrolases
  • INPPL1 protein, human
  • Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases