Artificial intelligence in gynecologic cancers: Current status and future challenges - A systematic review

Artif Intell Med. 2021 Oct:120:102164. doi: 10.1016/j.artmed.2021.102164. Epub 2021 Sep 3.

Abstract

Objective: Over the past years, the application of artificial intelligence (AI) in medicine has increased rapidly, especially in diagnostics, and in the near future, the role of AI in medicine will become progressively more important. In this study, we elucidated the state of AI research on gynecologic cancers.

Methods: A search was conducted in three databases-PubMed, Web of Science, and Scopus-for research papers dated between January 2010 and December 2020. As keywords, we used "artificial intelligence," "deep learning," "machine learning," and "neural network," combined with "cervical cancer," "endometrial cancer," "uterine cancer," and "ovarian cancer." We excluded genomic and molecular research, as well as automated pap-smear diagnoses and digital colposcopy.

Results: Of 1632 articles, 71 were eligible, including 34 on cervical cancer, 13 on endometrial cancer, three on uterine sarcoma, and 21 on ovarian cancer. A total of 35 studies (49%) used imaging data and 36 studies (51%) used value-based data as the input data. Magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, cytology, and hysteroscopy data were used as imaging data, and the patients' backgrounds, blood examinations, tumor markers, and indices in pathological examination were used as value-based data. The targets of prediction were definitive diagnosis and prognostic outcome, including overall survival and lymph node metastasis. The size of the dataset was relatively small because 64 studies (90%) included less than 1000 cases, and the median size was 214 cases. The models were evaluated by accuracy scores, area under the receiver operating curve (AUC), and sensitivity/specificity. Owing to the heterogeneity, a quantitative synthesis was not appropriate in this review.

Conclusions: In gynecologic oncology, more studies have been conducted on cervical cancer than on ovarian and endometrial cancers. Prognoses were mainly used in the study of cervical cancer, whereas diagnoses were primarily used for studying ovarian cancer. The proficiency of the study design for endometrial cancer and uterine sarcoma was unclear because of the small number of studies conducted. The small size of the dataset and the lack of a dataset for external validation were indicated as the challenges of the studies.

Keywords: Artificial intelligence; Cervical cancer; Endometrial cancer; Gynecologic cancer; Ovarian cancer; Systematic review.

Publication types

  • Review
  • Systematic Review

MeSH terms

  • Artificial Intelligence*
  • Female
  • Genital Neoplasms, Female* / diagnosis
  • Humans
  • Lymphatic Metastasis
  • Magnetic Resonance Imaging
  • Sensitivity and Specificity