EGFR-D770>GY and Other Rare EGFR Exon 20 Insertion Mutations with a G770 Equivalence Are Sensitive to Dacomitinib or Afatinib and Responsive to EGFR Exon 20 Insertion Mutant-Active Inhibitors in Preclinical Models and Clinical Scenarios

Cells. 2021 Dec 17;10(12):3561. doi: 10.3390/cells10123561.

Abstract

Epidermal growth factor receptor (EGFR) exon 20 insertion mutations account for a tenth of all EGFR mutations in lung cancers. An important unmet clinical need is the identification of EGFR exon 20 insertion mutants that can respond to multiple classes of approved EGFR-TKIs. We sought to characterize variants involving EGFR-D770 to EGFR-G770 position equivalence changes that structurally allow for response to irreversible 2nd generation EGFR-TKIs. Our group used preclinical models of EGFR exon 20 insertion mutations to probe representative 1st (erlotinib), 2nd (afatinib, dacomitinib), 3rd generation (osimertinib) and EGFR exon 20 insertion mutant-active (poziotinib, mobocertinib) TKIs; we also queried the available clinical literature plus our institutional database to enumerate clinical outcomes. EGFR-D770>GY and other EGFR insertions with a G770 equivalence were identified at a frequency of 3.96% in separate cohorts of EGFR exon 20 insertion mutated lung cancer (n = 429). Cells driven by EGFR-D770>GY were insensitive to erlotinib and osimertinib, displayed sensitivity to poziotinib and dacomitinib and were uniquely sensitive to afatinib and dacomitinib in comparison with other more typical EGFR exon 20 insertion mutations using proliferation and biochemical assays. Clinical cases with EGFR-G770 equivalence from the literature and our center mirrored the preclinical data, with radiographic responses and clinical benefits restricted to afatinib, dacomitinib, poziotinib and mobocertinib, but not to erlotinib or osimertinib. Although they are rare, at <4% of all exon 20 insertion mutations, EGFR-G770 equivalence exon 20 insertion mutations are sensitive to approved 2nd generation EGFR TKIs and EGFR exon 20 insertion mutant-active TKIs (mobocertinib and poziotinib). EGFR-D770>GY and other insertions with a G770 equivalence join EGFR-A763_Y764insFQEA as exon 20 insertion mutationsresponsive to approved EGFR TKIs beyond mobocertinib; this data should be considered for clinical care, genomic profiling reports and clinical trial elaboration.

Keywords: D770>GY; EGFR exon 20 insertion; afatinib; dacomitinib; lung cancer; mobocertinib; poziotinib.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Afatinib / pharmacology*
  • Amino Acid Sequence
  • Animals
  • Cell Line
  • Disease Models, Animal
  • ErbB Receptors / chemistry
  • ErbB Receptors / genetics*
  • Exons / genetics*
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / pathology
  • Mice
  • Mutagenesis, Insertional / genetics*
  • Mutation / genetics*
  • Neoplasm Staging
  • Protein Kinase Inhibitors / pharmacology*
  • Quinazolinones / pharmacology*

Substances

  • Protein Kinase Inhibitors
  • Quinazolinones
  • Afatinib
  • dacomitinib
  • ErbB Receptors