Human activities affect the multidecadal microplastic deposition records in a subtropical urban lake, China

Sci Total Environ. 2022 May 10:820:153187. doi: 10.1016/j.scitotenv.2022.153187. Epub 2022 Jan 21.

Abstract

Microplastic deposition in subtropical lakes and the influences of human activities remain to be deeply and fully understood. Owing to the intensification of urban construction and population growth, urban lakes serving as significant freshwater resources for sustainable development of the regional economy are becoming degraded, especially due to microplastic pollution. To understand the deposition characteristics of microplastics in lake sediments from the China's subtropical city, six sediment core samples were collected from Xinghu Lake of Guangdong Province. Here, we analyzed the morphological characteristics of microplastics from the perspective of microstructure, and investigated the temporal and spatial distribution patterns of microplastics on the macroscopic scale. The deposition characteristics of microplastics in the past 64 years and the influence of socio-economic factors on the accumulation of microplastics were further clarified through the isotope composition of cesium-137 and lead-210 in the subtropical urban area with intense human activities. The results showed that the microplastic concentration of sediment cores in Xinghu Lake was 523 ± 140 particles/kg. The average sizes of microplastics in the five sub-lakes (i.e., Bohai, Zhongxin, Li, Qinglian, and Xiannü Lakes) of Xinghu Lake were 668, 642, 727, 708 and 646 μm, respectively. There were 25 polymers in sediment cores of Xinghu Lake. Rayon, polypropylene, polyethylene terephthalate and polypropylene-polyethylene copolymer were the main types, and the microplastics have the aging phenomenon or mechanical abrasion. The average deposition rates of sediment and microplastics were 0.6 cm/a and 106 particles/(kg·a) in Xinghu Lake, respectively. Meanwhile, the urban expansion and economic growth, as indicated by the increase in the urban area, population and gross domestic product, all played an essential role in the accelerated accumulation of microplastics in sediment cores of Xinghu Lake.

Keywords: Guangdong Province; Isotope chronology; Sediment core; Socio-economic factor; Xinghu Lake.

MeSH terms

  • China
  • Environmental Monitoring
  • Geologic Sediments
  • Human Activities
  • Humans
  • Lakes
  • Microplastics*
  • Plastics
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical