Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review

J Neurosurg. 2022 Mar 11;137(5):1210-1225. doi: 10.3171/2022.1.JNS212613. Print 2022 Nov 1.

Abstract

Objective: Stereoelectroencephalography (sEEG) is a well-established surgical method for defining the epileptogenic network. Traditionally reserved for identifying discrete cortical regions for resection or ablation, sEEG in current practice is also used for identifying more broadly involved subcortical epileptic network components, driven by the availability of brain-based neuromodulation strategies. In particular, sEEG investigations including thalamic nuclei are becoming more frequent in parallel with the increase in therapeutic strategies involving thalamic targets such as deep brain stimulation (DBS) and responsive neurostimulation (RNS). The objective to this study was to evaluate existing evidence and trends regarding the purpose, techniques, and relevant electrographic findings of thalamic sEEG.

Methods: MEDLINE and Embase databases were systematically queried for eligible peer-reviewed studies involving sEEG electrode implantation into thalamic nuclei of patients with epilepsy. Available data were abstracted concerning preoperative workup and purpose for implanting the thalamus, thalamic targets and trajectories, and electrophysiological methodology and findings.

Results: sEEG investigations have included thalamic targets for both basic and clinical research purposes. Medial pulvinar, dorsomedial, anterior, and centromedian nuclei have been the most frequently studied. Few studies have reported any complications with thalamic sEEG implantation, and no studies have reported long-term complications. Various methods have been utilized to characterize thalamic activity in epileptic disorders including evoked potentials, power spectrograms, synchronization indices, and the epileptogenicity index. Thalamic intracranial recordings are beginning to be used to guide neuromodulation strategies including RNS and DBS, as well as to understand complex, network-dependent seizure disorders.

Conclusions: Inclusion of thalamic coverage during sEEG evaluation in drug-resistant epilepsy is a growing practice and is amenable to various methods of electrographic data analysis. Further study is required to establish well-defined criteria for thalamic implantation during invasive investigations as well as safety and ethical considerations.

Keywords: drug resistant; epilepsy; invasive EEG; sEEG; stereoelectroencephalography; thalamus.

Publication types

  • Review