Mitotic Spindle Positioning (MISP) is an actin bundler that selectively stabilizes the rootlets of epithelial microvilli

Cell Rep. 2022 Apr 19;39(3):110692. doi: 10.1016/j.celrep.2022.110692.

Abstract

Microvilli are conserved actin-based surface protrusions that have been repurposed throughout evolution to fulfill diverse cell functions. In the case of transporting epithelia, microvilli are supported by a core of actin filaments bundled in parallel by villin, fimbrin, and espin. Remarkably, microvilli biogenesis persists in mice lacking all three of these factors, suggesting the existence of unknown bundlers. We identified Mitotic Spindle Positioning (MISP) as an actin-binding factor that localizes specifically to the rootlet end of the microvillus. MISP promotes rootlet elongation in cells, and purified MISP exhibits potent filament bundling activity in vitro. MISP-bundled filaments also recruit fimbrin, which further elongates and stabilizes bundles. MISP confinement to the rootlet is enforced by ezrin, which prevents decoration of the membrane-wrapped distal end of the core bundle. These discoveries reveal how epithelial cells optimize apical membrane surface area and offer insight on the remarkable robustness of microvilli biogenesis.

Keywords: CP: Cell biology; brush border; cytoskeleton; ezrin; fimbrin; membrane; protrusion; rootlet.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Actins* / metabolism
  • Animals
  • Carrier Proteins* / metabolism
  • Chickens / metabolism
  • Mice
  • Microvilli / metabolism
  • Spindle Apparatus / metabolism

Substances

  • Actins
  • Carrier Proteins