Bactericidal Activity of Ceragenin in Combination with Ceftazidime, Levofloxacin, Co-Trimoxazole, and Colistin against the Opportunistic Pathogen Stenotrophomonas maltophilia

Pathogens. 2022 May 26;11(6):621. doi: 10.3390/pathogens11060621.

Abstract

Background: Stenotrophomonas maltophilia (S. maltophilia) is an emerging opportunistic Gram-negative rod causing nosocomial infections predominantly in immunocompromised patients. Due to its broad intrinsic resistance to antibiotics, including carbapenems and the ability to form a biofilm, it is difficult to eradicate.

Methods: In this study, the benefit of combined administration (potential synergism) and anti-biofilm activity of ceragenins: CSA-13, CSA-44, and CSA-131 (synthetic mimics of natural antimicrobial peptides) with ceftazidime, levofloxacin, co-trimoxazole and colistin against clinical strains of S. maltophilia were determined using MIC/MBC (minimum inhibitory concentration/minimum bactericidal concentration), killing assays and CV staining.

Results: Obtained data indicate that the ceragenins exhibit strong activity against the tested strains of S. maltophilia grown in planktonic culture and as stationary biofilms. Moreover, with some strains, the synergy of ceragenins with conventional antibiotics was observed Conclusion: Our data suggest that ceragenins are promising agents for future development of new methods for treatment of infections caused by S. maltophilia, along with its potential use in combination with conventional antibiotics.

Keywords: Stenotrophomonas maltophilia; ceragenins; synergy; trimethoprim/sulfamethoxazole.

Grants and funding