Identification of CPT2 as a prognostic biomarker by integrating the metabolism-associated gene signature in colorectal cancer

BMC Cancer. 2022 Oct 4;22(1):1038. doi: 10.1186/s12885-022-10126-0.

Abstract

Background: The incidence of colorectal cancer (CRC) is considered to be the third-highest malignant tumor among all carcinomas. The alterations in cellular bioenergetics (metabolic reprogramming) are associated with several malignant phenotypes in CRC, such as tumor cell proliferation, invasion, metastasis, chemotherapy resistance, as well as promotes its immune escape. However, the expression pattern of metabolism-associated genes that mediate metabolic reprogramming in CRC remains unknown.

Methods: In this study, we screened out CPT2 by investigating the function of a series of metabolism-related genes in CRC progression by integrating the data from the TCGA and GEO databases. Next, we collected CRC tissues (n = 24) and adjacent non-tumor tissues (n = 8) and analyzed mRNA levels by qRT-PCR, and proteins levels of CPT2 in CRC cell lines by western blotting. CCK-8 assay, colony formation assay, Edu assay and flow cytometry assay were performed to assess the effects of CPT2 on proliferation in vitro.

Results: We identified 236 metabolism-related genes that are differentially expressed in colorectal cancer, of which 49 up-regulated and 187 down-regulated, and found CPT2 as the most significant gene associated with favorable prognosis in CRC. It was revealed that CPT2 expression was consistently down-regulated in CRC cell lines and tissues. Moreover, knockdown of CPT2 could promote the proliferative ability of CRC cells, whereas over-expression of CPT2 significantly suppressed the cell growth.

Conclusion: In summary, CPT2 can provide new insights about the progression and occurrence of the tumor as it acts as an independent prognostic factor in CRC sufferers.

Keywords: CPT2; Colorectal cancer; GEO; Metabolism; TCGA.

MeSH terms

  • Biomarkers
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Colorectal Neoplasms* / pathology
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Prognosis
  • RNA, Messenger

Substances

  • Biomarkers
  • RNA, Messenger