Lycopene-Loaded Bilosomes Ameliorate High-Fat Diet-Induced Chronic Nephritis in Mice through the TLR4/MyD88 Inflammatory Pathway

Foods. 2022 Sep 30;11(19):3042. doi: 10.3390/foods11193042.

Abstract

Chronic kidney disease caused by a high-fat diet (HFD)-induced metabolic syndrome has received widespread attention. Lycopene has a wide range of biological activities and can improve a variety of chronic diseases through anti-inflammatory effects. In this study, HFD-fed mice were used as a metabolic syndrome model to evaluate the protective effect of lycopene in a sustained-release vehicle (bilosomes) in the small intestine against renal injury and to determine whether the TLR4/MyD88 pathway and related metabolic pathways are involved in this process. The results showed that lycopene bilosomes alleviated HFD-induced kidney damage, as evidenced by lower serum urea nitrogen, creatinine, and uric acid levels. Histopathology studies showed that lycopene bilosomes attenuated HFD-induced tubular cell and glomerular injury. In addition, Elisa, RT-PCR, and Western blotting results showed that lycopene bilosomes also reduced the expression of inflammatory factors such as TLR4, MyD88, NF-kB, TNF-a, and IL-6 in mouse kidneys. The mechanism was to attenuate renal inflammatory response by inhibiting the TLR4/MyD88 inflammatory pathway. These findings suggested that lycopene can alleviate nephritis and metabolic disorders caused by HFD, inhibiting the TLR4/MyD88 inflammatory pathway and its downstream pro-inflammatory cytokines and further regulating the vitamin K metabolism, beta-alanine metabolism, and glutathione metabolism pathways to relieve chronic nephritis.

Keywords: TLR4/MyD88; chronic nephritis; lycopene; metabolomics.

Grants and funding

This work is financially supported by the Wuxi Taihu Lake Talent Plan, National Key Research and Development Program of China (Nos. 2020YFC1606800).