Acquisition of Dual Ribozyme-Functions in Nonfunctional Short Hairpin RNAs through Kissing-Loop Interactions

Life (Basel). 2022 Oct 8;12(10):1561. doi: 10.3390/life12101561.

Abstract

The acquisition of functions via the elongation of nucleotides is an important factor in the development of the RNA world. In our previous study, we found that the introduction of complementary seven-membered kissing loops into inactive R3C ligase ribozymes revived their ligation activity. In this study, we applied the kissing complex formation-induced rearrangement of RNAs to two nonfunctional RNAs by introducing complementary seven-membered loops into each of them. By combining these two forms of RNAs, the ligase activity (derived from the R3C ligase ribozyme) as well as cleavage activity (derived from the hammerhead ribozyme) was obtained. Thus, effective RNA evolution toward the formation of a life system may require the achievement of "multiple" functions via kissing-loop interactions, as indicated in this study. Our results point toward the versatility of kissing-loop interactions in the evolution of RNA, i.e., two small nonfunctional RNAs can gain dual functions via a kissing-loop interaction.

Keywords: RNA evolution; hammerhead ribozyme; kissing-loop interactions; ligase ribozyme.