Petals Reduce Attachment of Insect Pollinators: A Case Study of the Plant Dahlia pinnata and the Fly Eristalis tenax

Insects. 2023 Mar 14;14(3):285. doi: 10.3390/insects14030285.

Abstract

In order to understand whether the petal surface in "cafeteria"-type flowers, which offer their nectar and pollen to insect pollinators in an open way, is adapted to a stronger attachment of insect pollinators, we selected the plant Dahlia pinnata and the hovering fly Eristalis tenax, both being generalist species according to their pollinator's spectrum and diet, respectively. We combined cryo scanning electron microscopy examination of leaves, petals, and flower stems with force measurements of fly attachment to surfaces of these plant organs. Our results clearly distinguished two groups among tested surfaces: (1) the smooth leaf and reference smooth glass ensured a rather high attachment force of the fly; (2) the flower stem and petal significantly reduced it. The attachment force reduction on flower stems and petals is caused by different structural effects. In the first case, it is a combination of ridged topography and three-dimensional wax projections, whereas the papillate petal surface is supplemented by cuticular folds. In our opinion, these "cafeteria"-type flowers have the petals, where the colour intensity is enhanced due to papillate epidermal cells covered by cuticular folds at the micro- and nanoscale, and exactly these latter structures mainly contribute to adhesion reduction in generalist insect pollinators.

Keywords: attachment force; cuticular folds; epicuticular wax projections; flower stems; leaves; papillae; pollination; “cafeteria”-type flowers.

Grants and funding

This research received no external funding.