The potential role of alfalfa polysaccharides and their sulphated derivatives in the alleviation of obesity

Food Funct. 2023 Aug 14;14(16):7586-7602. doi: 10.1039/d3fo01390a.

Abstract

Sulfated alfalfa polysaccharides (SAPs) as derivatives of alfalfa polysaccharides (APs) showed better in vitro antioxidant activity and potential obesity inhibition. The purpose of this study was to investigate the effect and mechanisms of APs and SAPs on obesity alleviation. Different concentrations of APs and SAPs were tested for effects on body conditions, gut flora, antioxidant capacity, and immunological factors. The results showed that APs and SAPs improved the physical conditions of obese mice, including organ weight, body weight, intraperitoneal fat ratio, and lipid levels. APs and SAPs increased the antioxidant capacity of the obese mice, enhanced the activity of SOD and CAT, and decreased the activity of MDA in the serum, liver, and colon. APs and SAPs upregulated the mRNA expression of IL-4 and IL-10 and downregulated the mRNA expression of NF-κB, IFN-γ, TNF-α, and IL-6 in the liver and colon. Meanwhile, APs and SAPs improved lipid absorption in the jejunum, upregulated LXR and GLP-2, and down-regulated the mRNA expression of NPC1L1. APs and SAPs also contributed to restoring short-chain fatty acid levels in the colon. APs and SAPs improved the structure of the intestinal flora, promoted the proliferation of bacteria associated with short-chain fatty acid metabolism, and inhibited the proliferation of pathogenic bacteria. At the same concentration, the effect of SAPs on the antioxidant capacity was stronger than that of APs. In the AP group, high concentrations of APs showed the best anti-inflammatory effect, while in the SAP group, medium concentrations of SAPs showed the best inhibition of inflammation. Our results suggest that APs and SAPs alleviate obesity symptoms by relieving inflammation, improving the antioxidant capacity, and regulating intestinal flora and therefore could be used as potential probiotic products to alleviate obesity.

MeSH terms

  • Animals
  • Antioxidants* / pharmacology
  • Inflammation / genetics
  • Lipids
  • Medicago sativa* / chemistry
  • Mice
  • Mice, Obese
  • Polysaccharides / chemistry
  • Polysaccharides / pharmacology
  • RNA, Messenger / metabolism

Substances

  • Antioxidants
  • Polysaccharides
  • RNA, Messenger
  • Lipids