Aloin and CPT-11 combination activates miRNA-133b and downregulates IGF1R- PI3K/AKT/mTOR and MEK/ERK pathways to inhibit colorectal cancer progression

Biomed Pharmacother. 2023 Dec 31:169:115911. doi: 10.1016/j.biopha.2023.115911. Epub 2023 Nov 24.

Abstract

CPT-11 is one of the drugs employed in colorectal cancer treatment and has faced challenges in the form of resistance. The insulin-like growth factor 1 receptor is a tyrosine kinase receptor that mediates cancer cell survival and drug resistance. It is frequently overexpressed in colorectal cancer and has previously been identified as a microRNA target. MicroRNAs are non-coding RNA molecules that regulate gene function by suppressing messenger RNA translation. Studies have demonstrated that natural compounds can regulate microRNA function and their target genes. Therefore, combining natural compounds with existing cancer drugs can enhance the therapeutic efficacy. We investigated a natural compound, Aloin, for the potential sensitization of colorectal cancer to CPT-11. We used western blot, MTT cell viability assay, flow cytometry, and microRNA/gene knockdown and overexpression experiments, as well as an in vivo mouse model. Our investigation revealed that combining Aloin with CPT-11 exerts an enhanced anti-tumor effect in colorectal cancer. This combination reduced cell viability and induced apoptosis, both in vivo and in vitro. Furthermore, this combination upregulated miRNA-133b, while downregulating the IGF1R and its downstream MEK/ERK, and PI3K/AKT/mTOR pathways. Our findings suggests that CPT-11 and Aloin are potential combination treatment partners against colorectal cancer. MicroRNA-133b may serve as a co-therapeutic target with IGF1R against colorectal cancer, which might overcome the existing treatment limitations.

Keywords: Aloin; CPT-11; Colorectal cancer; IGF1R; miRNA-133b.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Proliferation
  • Colorectal Neoplasms* / drug therapy
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / pathology
  • Irinotecan / pharmacology
  • Irinotecan / therapeutic use
  • MAP Kinase Signaling System
  • Mice
  • MicroRNAs* / metabolism
  • Mitogen-Activated Protein Kinase Kinases / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Irinotecan
  • Proto-Oncogene Proteins c-akt
  • Phosphatidylinositol 3-Kinases
  • alloin
  • TOR Serine-Threonine Kinases
  • MicroRNAs
  • Mitogen-Activated Protein Kinase Kinases