Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells. Effects of mechanical strain on monocyte adhesion to endothelial cells

Circ Res. 1995 Aug;77(2):294-302. doi: 10.1161/01.res.77.2.294.

Abstract

Monocyte chemotactic protein-1 (MCP-1), a potent monocyte chemoattractant secreted by endothelial cells (ECs), is believed to play a key role in the early events of atherogenesis. Since vascular ECs are constantly subjected to mechanical stresses, we examined how cyclic strain affects the expression of the MCP-1 gene in human ECs grown on a flexible membrane base deformed by sinusoidal negative pressure (peak level, -16 kPa at 60 cycles per minute). Northern blot analysis demonstrated that the MCP-1 mRNA levels in ECs subjected to strain for 1, 5, or 24 hours were double those in control ECs (P < .05). This strain-induced increase was mainly serum independent, and MCP-1 mRNA level returned to its control basal level 3 hours after release of strain. Culture media from strained ECs contained approximately twice the MCP-1 concentration and more than twice the monocyte chemotactic activity of media from control ECs (P < .05). Pretreatment of collected media with anti-MCP-1 antibody suppressed such activity. Monocyte adhesion to ECs subjected to strain for 12 hours was 1.8-fold greater than adhesion to unstrained control ECs (P < .05). A protein kinase C inhibitor, calphostin C, abolished the strain-induced MCP-1 gene expression. In addition, cAMP- or cGMP-dependent protein kinase inhibitors (KT5720 and KT5823, respectively) partially inhibited such expression. Pretreatment with EGTA or the intracellular Ca2+ chelator BAPTA/AM strongly suppressed the strain-induced MCP-1 mRNA. Verapamil, a Ca2+ channel blocker, greatly reduced MCP-1 mRNA levels in both strained and unstrained ECs.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Arteriosclerosis / etiology
  • Calcium / metabolism
  • Cells, Cultured
  • Chemokine CCL2
  • Chemotactic Factors / analysis
  • Chemotactic Factors / genetics*
  • Cytokines / genetics*
  • Endothelium, Vascular / cytology*
  • Endothelium, Vascular / enzymology
  • Endothelium, Vascular / metabolism*
  • Enzyme-Linked Immunosorbent Assay
  • Gene Expression*
  • Humans
  • In Vitro Techniques
  • Monocytes / physiology*
  • Protein Kinases / metabolism
  • RNA, Messenger / analysis
  • Signal Transduction
  • Stress, Mechanical*
  • Tissue Adhesions
  • Umbilical Veins

Substances

  • Chemokine CCL2
  • Chemotactic Factors
  • Cytokines
  • RNA, Messenger
  • Protein Kinases
  • Calcium