Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study

Arthritis Res Ther. 2008;10(1):R9. doi: 10.1186/ar2358. Epub 2008 Jan 18.

Abstract

Background: Rheumatoid arthritis (RA) is a chronic, inflammatory and systemic autoimmune disease that leads to progressive cartilage destruction. Advances in the treatment of RA-related destruction of cartilage require profound insights into the molecular mechanisms involved in cartilage degradation. Until now, comprehensive data about the molecular RA-related dysfunction of chondrocytes have been limited. Hence, the objective of this study was to establish a standardized in vitro model to profile the key regulatory molecules of RA-related destruction of cartilage that are expressed by human chondrocytes.

Methods: Human chondrocytes were cultured three-dimensionally for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatants from SV40 T-antigen immortalized human synovial fibroblasts (SF) derived from a normal donor (NDSF) and from a patient with RA (RASF), respectively. To identify RA-related factors released from SF, supernatants of RASF and NDSF were analyzed with antibody-based protein membrane arrays. Stimulated cartilage-like cultures were used for subsequent gene expression profiling with oligonucleotide microarrays. Affymetrix GeneChip Operating Software and Robust Multi-array Analysis (RMA) were used to identify differentially expressed genes. Expression of selected genes was verified by real-time RT-PCR.

Results: Antibody-based protein membrane arrays of synovial fibroblast supernatants identified RA-related soluble mediators (IL-6, CCL2, CXCL1-3, CXCL8) released from RASF. Genome-wide microarray analysis of RASF-stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (adenosine A2A receptor, cyclooxygenase-2), the NF-kappaB signaling pathway (toll-like receptor 2, spermine synthase, receptor-interacting serine-threonine kinase 2), cytokines/chemokines and receptors (CXCL1-3, CXCL8, CCL20, CXCR4, IL-1beta, IL-6), cartilage degradation (matrix metalloproteinase (MMP)-10, MMP-12) and suppressed matrix synthesis (cartilage oligomeric matrix protein, chondroitin sulfate proteoglycan 2).

Conclusion: Differential transcriptome profiling of stimulated human chondrocytes revealed a disturbed catabolic-anabolic homeostasis of chondrocyte function and disclosed relevant pharmacological target genes of cartilage destruction. This study provides comprehensive insight into molecular regulatory processes induced in human chondrocytes during RA-related destruction of cartilage. The established model may serve as a human in vitro disease model of RA-related destruction of cartilage and may help to elucidate the molecular effects of anti-rheumatic drugs on human chondrocyte gene expression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arthritis, Rheumatoid / metabolism*
  • Arthritis, Rheumatoid / pathology*
  • Cartilage, Articular / metabolism*
  • Cartilage, Articular / pathology*
  • Cells, Cultured
  • Chondrocytes / metabolism*
  • Computer Systems
  • Fibroblasts / metabolism
  • Gene Expression Profiling
  • Humans
  • In Vitro Techniques
  • Oligonucleotide Array Sequence Analysis
  • Proteomics
  • Reproducibility of Results
  • Reverse Transcriptase Polymerase Chain Reaction
  • Synovial Membrane / metabolism
  • Synovial Membrane / pathology