Microarray analysis of retinal gene expression in Egr-1 knockout mice

Mol Vis. 2009 Dec 10:15:2720-39.

Abstract

Purpose: We found earlier that 42 day-old Egr-1 knockout mice had longer eyes and a more myopic refractive error compared to their wild-types. To identify genes that could be responsible for the temporarily enhanced axial eye growth, a microarray analysis was performed in knockout and wild-type mice at the postnatal ages of 30 and 42 days.

Methods: The retinas of homozygous and wild-type Egr-1 knockout mice (Taconic, Ry, Denmark) were prepared for RNA isolation (RNeasy Mini Kit, Qiagen) at the age of 30 or 42 days, respectively (n=12 each). Three retinas were pooled and labeled cRNA was made. The samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Hybridization signals were calculated using GC-RMA normalization. Genes were identified as differentially expressed if they showed a fold-change (FC) of at least 1.5 and a p-value <0.05. A false-discovery rate of 5% was applied. Ten genes with potential biologic relevance were examined further with semiquantitative real-time RT-PCR.

Results: Comparing mRNA expression levels between wild-type and homozygous Egr-1 knockout mice, we found 73 differentially expressed genes at the age of 30 days and 135 genes at the age of 42 days. Testing for differences in gene expression between the two ages (30 versus 42 days), 54 genes were differently expressed in wild-type mice and 215 genes in homozygous animals. Based on three networks proposed by Ingenuity pathway analysis software, nine differently expressed genes in the homozygous Egr-1 knockout mice were chosen for further validation by real-time RT-PCR, three genes in each network. In addition, the gene that was most prominently regulated in the knockout mice, compared to wild-type, at both 30 days and 42 days of age (protocadherin beta-9 [Pcdhb9]), was tested with real-time RT-PCR. Changes in four of the ten genes could be confirmed by real-time RT-PCR: nuclear prelamin A recognition factor (Narf), oxoglutarate dehydrogenase (Ogdh), selenium binding protein 1 (Selenbp1), and Pcdhb9. Except for Pcdhb9, the genes whose mRNA expression levels were validated were listed in one of the networks proposed by Ingenuity pathway analysis software. In addition to these genes, the software proposed several key-regulators which did not change in our study: retinoic acid, vascular endothelial growth factor A (VEGF-A), FBJ murine osteosarcoma viral oncogene homolog (cFos), and others.

Conclusions: Identification of genes that are differentially regulated during the development period between postnatal day 30 (when both homozygous and wild-type mice still have the same axial length) and day 42 (where the difference in eye length is apparent) could improve the understanding of mechanisms for the control of axial eye growth and may lead to potential targets for pharmacological intervention. With the aid of pathway-analysis software, a coarse picture of possible biochemical pathways could be generated. Although the mRNA expression levels of proteins proposed by the software, like VEGF, FOS, retinoic acid (RA) receptors, or cellular RA binding protein, did not show any changes in our experiment, these molecules have previously been implicated in the signaling cascades controlling axial eye growth. According to the pathway-analysis software, they represent links between several proteins whose mRNA expression was changed in our study.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / genetics
  • Animals
  • Early Growth Response Protein 1 / deficiency*
  • Early Growth Response Protein 1 / genetics
  • Early Growth Response Protein 1 / metabolism
  • Gene Expression Profiling
  • Gene Expression Regulation*
  • Homozygote
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Oligonucleotide Array Sequence Analysis*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Retina / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction / genetics

Substances

  • Early Growth Response Protein 1
  • Egr1 protein, mouse
  • RNA, Messenger