A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation

Am J Bot. 1997 Apr;84(4):541.

Abstract

Phylogenetic analysis of the chloroplast-encoded rbcL gene in Leguminosae are consistent with previous hypotheses in suggesting that the family as a whole is monophyletic, but that only two of its three subfamilies are natural. The earliest dichotomies in the family appear to have involved tribes Cercideae or Cassieae (subtribe Dialiinae), followed by Detarieae/ Macrolobieae, all of which are members of subfamily Caesalpinioideae. The remainder of the family is divided into two clades: (1) Mimosoideae and the caesalpinioid tribes Caeasalpinieae and Cassieae (subtribes Ceratoniinae and Cassiinae); (2) Papilionoideae. Basal groups within Papilionoideae are, as expected, elements of the grade tribes Sophoreae and Swartzieae. Major clades within Papilionoideae include: (1) a Genistoid Alliance comprising Genisteae, Crotalarieae, Podalyrieae, Thermopsideae, Euchresteae, and also some Sophoreae; (2) a clade marked by the absence of one copy of the chloroplast inverted repeat, with which are associated Robinieae. Loteae, and some Sophoreae; (3) Phaseoleae, Desmodieae. Psoraleeae, and most Millettieae, a group also marked by presence of pseudoracemose inflorescences; and (4) a well-supported clade comprising Aeschynomeneae, Adesmieae, and some Dalbergieae. Nodulation is most parsimoniously optimized on the rbcL strict consensus tree as three parallel gains, occurring in Papilionoideae, the caesalpioioid ancestors of Mimosoideae, and in the genus Chamaecrista (Caesalpinieae: Cassieae).