Phylogenetics of the woodrat genus Neotoma (Rodentia: Muridae): implications for the evolution of phenotypic variation in male external genitalia

Mol Phylogenet Evol. 2007 Mar;42(3):637-52. doi: 10.1016/j.ympev.2006.08.011. Epub 2006 Nov 15.

Abstract

Interspecific morphological variation in animal genitalia has long attracted the attention of evolutionary biologists because of the role genital form may play in the generation and/or maintenance of species boundaries. Here we examine the origin and evolution of genital variation in rodents of the muroid genus Neotoma. We test the hypothesis that a relatively rare genital form has evolved only once in Neotoma. We use four mitochondrial and four nuclear markers to evaluate this hypothesis by establishing a phylogenetic framework in which to examine genital evolution. We find intron seven of the beta-fibrinogen gene to be a highly informative nuclear marker for the levels of differentiation that characterize Neotoma with this locus evolving at a rate slower than cytochrome b but faster than 12S. We estimate phylogenetic relationships within Neotoma using both maximum parsimony and maximum likelihood-based Bayesian methods. Our Bayesian and parsimony reconstructions differ in significant ways, but we show that our parsimony analysis may be influenced by long-branch attraction. Furthermore, our estimate of Neotoma phylogeny remains consistent across various data partitioning strategies in the Bayesian analyses. Using ancestral state reconstruction, we find support for the monophyly of taxa that possess the relatively rare genital form. However, we also find support for the independent evolution of the common genital form and discuss possible underlying developmental shifts that may have contributed to our observed patterns of morphological evolution.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution*
  • Genetic Variation / physiology*
  • Genitalia, Male / anatomy & histology*
  • Male
  • Models, Biological
  • Phenotype*
  • Phylogeny*
  • Sigmodontinae / genetics*