Characterization of a novel lipid A containing D-galacturonic acid that replaces phosphate residues. The structure of the lipid a of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus

J Biol Chem. 2000 Apr 14;275(15):11222-8. doi: 10.1074/jbc.275.15.11222.

Abstract

According to the 16 S rRNA phylogenetic tree, the hyperthermophilic bacterium Aquifex pyrophilus represents the deepest and shortest branching species of the kingdom Bacteria. We show for the first time that an organism, which is phylogenetically ancient on the basis of its 16 S rRNA and that exists at extreme conditions, may contain lipopolysaccharide (LPS). The LPS was extracted from dried bacteria using a modified phenol/water method. SDS-polyacrylamide gel electrophoresis and silver stain displayed a ladder-like pattern, which is typical for smooth-form LPS (possessing an O-specific polysaccharide). The molecular masses of the LPS populations were determined by matrix-assisted laser-desorption ionization mass spectrometry. Lipid A was precipitated after mild acid hydrolysis of LPS. Its complete structure was determined by chemical analyses, combined gas-liquid chromatography-mass spectrometry, matrix-assisted laser-desorption ionization mass spectrometry, and one- and two-dimensional NMR spectroscopy. The lipid A consists of a beta-(1-->6)-linked 2,3-diamino-2,3-dideoxy-D-glucopyranose (DAG) disaccharide carrying two residues each of (R)-3-hydroxytetradecanoic acid and (R)-3-hydroxyhexadecanoic acid in amide linkage and one residue of octadecanoic acid in ester linkage. Each DAG moiety carries one residue of each 3-hydroxytetradecanoic and 3-hydroxyhexadecanoic acid. In the nonreducing DAG, the octadecanoic acid is attached to the 3-hydroxy group of 3-hydroxytetradecanoic acid. Each DAG is substituted by one D-galacturonic acid residue, which is linked to O-1 of the reducing and to O-4 of the nonreducing end. This structure represents a novel type of lipid A.

MeSH terms

  • Gram-Negative Aerobic Rods and Cocci / chemistry*
  • Hexuronic Acids / analysis*
  • Lipid A / analysis
  • Lipid A / chemistry*
  • Magnetic Resonance Spectroscopy
  • Water Microbiology*

Substances

  • Hexuronic Acids
  • Lipid A
  • galacturonic acid