Structural and functional characterization of IS679 and IS66-family elements

J Bacteriol. 2001 Jul;183(14):4296-304. doi: 10.1128/JB.183.14.4296-4304.2001.

Abstract

A new insertion sequence (IS) element, IS679 (2,704 bp in length), has been identified in plasmid pB171 of enteropathogenic Escherichia coli B171. IS679 has imperfect 25-bp terminal inverted repeats (IRs) and three open reading frames (ORFs) (here called tnpA, tnpB, and tnpC). A plasmid carrying a composite transposon (Tn679) with the kanamycin resistance gene flanked by an intact IS679 sequence and an IS679 fragment with only IRR (IR on the right) was constructed to clarify the transposition activity of IS679. A transposition assay done with a mating system showed that Tn679 could transpose at a high frequency to the F plasmid derivative used as the target. On transposition, Tn679 duplicated an 8-bp sequence at the target site. Tn679 derivatives with a deletion in each ORF of IS679 did not transpose, finding indicative that all three IS679 ORFs are essential for transposition. The tnpA and tnpC products appear to have the amino acid sequence motif characteristic of most transposases. A homology search of the databases found that a total of 25 elements homologous to IS679 are present in Agrobacterium, Escherichia, Rhizobium, Pseudomonas, and Vibrio spp., providing evidence that the elements are widespread in gram-negative bacteria. We found that these elements belong to the IS66 family, as do other elements, including nine not previously reported. Almost all of the elements have IRs similar to those in IS679 and, like IS679, most appear to have duplicated an 8-bp sequence at the target site on transposition. These elements have three ORFs corresponding to those in IS679, but many have a mutation(s) in an ORF(s). In almost all of the elements, tnpB is located in the -1 frame relative to tnpA, such that the initiation codon of tnpB overlaps the TGA termination codon of tnpA. In contrast, tnpC, separated from tnpB by a space of ca. 20 bp, is located in any one of three frames relative to tnpB. No common structural features were found around the intergenic regions, indicating that the three ORFs are expressed by translational coupling but not by translational frameshifting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • DNA Transposable Elements* / physiology
  • DNA, Bacterial* / physiology
  • Molecular Sequence Data
  • Open Reading Frames / physiology

Substances

  • DNA Transposable Elements
  • DNA, Bacterial