Force-dependent allostery of the α-catenin actin-binding domain controls adherens junction dynamics and functions

Nat Commun. 2018 Nov 30;9(1):5121. doi: 10.1038/s41467-018-07481-7.

Abstract

α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actin Cytoskeleton / chemistry
  • Actin Cytoskeleton / metabolism
  • Actins / chemistry
  • Actins / metabolism
  • Adherens Junctions / metabolism*
  • Animals
  • Cadherins / chemistry
  • Cadherins / metabolism
  • Humans
  • Protein Structure, Secondary
  • alpha Catenin / chemistry
  • alpha Catenin / metabolism*

Substances

  • Actins
  • Cadherins
  • alpha Catenin