R-state AMP complex reveals initial steps of the quaternary transition of fructose-1,6-bisphosphatase

J Biol Chem. 2005 May 20;280(20):19737-45. doi: 10.1074/jbc.M501011200. Epub 2005 Mar 14.

Abstract

AMP transforms fructose-1,6-bisphosphatase from its active R-state to its inactive T-state; however, the mechanism of that transformation is poorly understood. The mutation of Ala(54) to leucine destabilizes the T-state of fructose-1,6-bisphosphatase. The mutant enzyme retains wild-type levels of activity, but the concentration of AMP that causes 50% inhibition increases 50-fold. In the absence of AMP, the Leu(54) enzyme adopts an R-state conformation nearly identical to that of the wild-type enzyme. The mutant enzyme, however, grows in two crystal forms in the presence of saturating AMP. In one form, the AMP-bound tetramer is in a T-like conformation, whereas in the other form, the AMP-bound tetramer is in a R-like conformation. The latter reveals conformational changes in two helices due to the binding of AMP. Helix H1 moves toward the center of the tetramer and displaces Ile(10) from a hydrophobic pocket. The displacement of Ile(10) exposes a hydrophobic surface critical to interactions that stabilize the T-state. Helix H2 moves away from the center of the tetramer, breaking hydrogen bonds with a buried loop (residues 187-195) in an adjacent subunit. The same hydrogen bonds reform but only after the quaternary transition to the T-state. Proposed here is a model that accounts for the quaternary transition and cooperativity in the inhibition of catalysis by AMP.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Monophosphate / chemistry
  • Adenosine Monophosphate / metabolism*
  • Amino Acid Substitution
  • Base Sequence
  • Binding Sites / genetics
  • Crystallography, X-Ray
  • DNA, Bacterial / genetics
  • Enzyme Stability
  • Escherichia coli / enzymology
  • Escherichia coli / genetics
  • Fructose-Bisphosphatase / antagonists & inhibitors
  • Fructose-Bisphosphatase / chemistry*
  • Fructose-Bisphosphatase / genetics
  • Fructose-Bisphosphatase / metabolism*
  • Hydrogen Bonding
  • Kinetics
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Protein Conformation
  • Protein Structure, Quaternary
  • Protein Structure, Tertiary
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Static Electricity

Substances

  • DNA, Bacterial
  • Recombinant Proteins
  • Adenosine Monophosphate
  • Fructose-Bisphosphatase

Associated data

  • PDB/1YXI
  • PDB/1YYZ
  • PDB/1YZ0