Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Targeting Mannitol Metabolism as an Alternative Antimicrobial Strategy Based on the Structure-Function Study of Mannitol-1-Phosphate Dehydrogenase in Staphylococcus aureus.

Nguyen T, Kim T, Ta HM, Yeo WS, Choi J, Mizar P, Lee SS, Bae T, Chaurasia AK, Kim KK.

MBio. 2019 Jul 9;10(4). pii: e02660-18. doi: 10.1128/mBio.02660-18.

2.

Evaluation of small molecule SecA inhibitors against methicillin-resistant Staphylococcus aureus.

Jin J, Cui J, Chaudhary AS, Hsieh YH, Damera K, Zhang H, Yang H, Wang B, Tai PC.

Bioorg Med Chem. 2015 Nov 1;23(21):7061-8. doi: 10.1016/j.bmc.2015.09.027. Epub 2015 Sep 21.

3.

Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study.

Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, Meng LR, Fong P.

Exp Biol Med (Maywood). 2017 Apr;242(7):731-743. doi: 10.1177/1535370216689828. Epub 2017 Jan 1.

5.

Polyol-specific long-chain dehydrogenases/reductases of mannitol metabolism in Aspergillus fumigatus: biochemical characterization and pH studies of mannitol 2-dehydrogenase and mannitol-1-phosphate 5-dehydrogenase.

Krahulec S, Armao GC, Bubner P, Klimacek M, Nidetzky B.

Chem Biol Interact. 2009 Mar 16;178(1-3):274-82. doi: 10.1016/j.cbi.2008.10.001. Epub 2008 Oct 15.

PMID:
18983992
6.

Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.

Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, DeLeo FR, Otto M, Cheung AL, Edwards BS, Sklar LA, Horswill AR, Hall PR, Gresham HD.

PLoS Pathog. 2014 Jun 12;10(6):e1004174. doi: 10.1371/journal.ppat.1004174. eCollection 2014 Jun.

7.

Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae.

Rousvoal S, Groisillier A, Dittami SM, Michel G, Boyen C, Tonon T.

Planta. 2011 Feb;233(2):261-73. doi: 10.1007/s00425-010-1295-6. Epub 2010 Oct 28.

PMID:
20981555
8.

Role of PknB kinase in antibiotic resistance and virulence in community-acquired methicillin-resistant Staphylococcus aureus strain USA300.

Tamber S, Schwartzman J, Cheung AL.

Infect Immun. 2010 Aug;78(8):3637-46. doi: 10.1128/IAI.00296-10. Epub 2010 Jun 14.

9.

Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress.

Imber M, Huyen NTT, Pietrzyk-Brzezinska AJ, Loi VV, Hillion M, Bernhardt J, Thärichen L, Kolšek K, Saleh M, Hamilton CJ, Adrian L, Gräter F, Wahl MC, Antelmann H.

Antioxid Redox Signal. 2018 Feb 20;28(6):410-430. doi: 10.1089/ars.2016.6897. Epub 2017 Jan 18.

10.

Dehydrosqualene Desaturase as a Novel Target for Anti-Virulence Therapy against Staphylococcus aureus.

Gao P, Davies J, Kao RYT.

MBio. 2017 Sep 5;8(5). pii: e01224-17. doi: 10.1128/mBio.01224-17.

11.

Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp.

Bonin P, Groisillier A, Raimbault A, Guibert A, Boyen C, Tonon T.

Phytochemistry. 2015 Sep;117:509-520. doi: 10.1016/j.phytochem.2015.07.015. Epub 2015 Jul 30.

PMID:
26232554
12.
13.

Characterization of salt-regulated mannitol-1-phosphate dehydrogenase in the red alga Caloglossa continua.

Iwamoto K, Kawanobe H, Ikawa T, Shiraiwa Y.

Plant Physiol. 2003 Oct;133(2):893-900. Epub 2003 Sep 11.

14.

Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus.

Kaplan JB, Izano EA, Gopal P, Karwacki MT, Kim S, Bose JL, Bayles KW, Horswill AR.

MBio. 2012 Jul 31;3(4):e00198-12. doi: 10.1128/mBio.00198-12. Print 2012.

15.

A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes.

Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, Bayles KW.

MBio. 2013 Feb 12;4(1):e00537-12. doi: 10.1128/mBio.00537-12.

16.

Antibacterial mechanism of daptomycin antibiotic against Staphylococcus aureus based on a quantitative bacterial proteome analysis.

Ma W, Zhang D, Li G, Liu J, He G, Zhang P, Yang L, Zhu H, Xu N, Liang S.

J Proteomics. 2017 Jan 6;150:242-251. doi: 10.1016/j.jprot.2016.09.014. Epub 2016 Sep 29.

17.

Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus.

Zoraghi R, See RH, Gong H, Lian T, Swayze R, Finlay BB, Brunham RC, McMaster WR, Reiner NE.

Biochemistry. 2010 Sep 7;49(35):7733-47. doi: 10.1021/bi100780t.

PMID:
20707314
18.

Tuning of the Lethal Response to Multiple Stressors with a Single-Site Mutation during Clinical Infection by Staphylococcus aureus.

Kumar K, Chen J, Drlica K, Shopsin B.

MBio. 2017 Oct 24;8(5). pii: e01476-17. doi: 10.1128/mBio.01476-17.

19.

Targeting Alpha Toxin and ClfA with a Multimechanistic Monoclonal-Antibody-Based Approach for Prophylaxis of Serious Staphylococcus aureus Disease.

Tkaczyk C, Hamilton MM, Sadowska A, Shi Y, Chang CS, Chowdhury P, Buonapane R, Xiao X, Warrener P, Mediavilla J, Kreiswirth B, Suzich J, Stover CK, Sellman BR.

MBio. 2016 Jun 28;7(3). pii: e00528-16. doi: 10.1128/mBio.00528-16.

20.

Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.

Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, Pereira PM, Roemer T, Filipe SR, Pereira-Leal JB, Ligoxygakis P, Pinho MG.

PLoS Pathog. 2015 May 7;11(5):e1004891. doi: 10.1371/journal.ppat.1004891. eCollection 2015 May.

Supplemental Content

Support Center