U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles

(Submitter supplied) Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and transcriptome has not been studied in detail. In this study, 24-h sinoidal temperature cycles, oscillating between 12 and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose, and extracellular metabolites, as well as CO2-production rates showed regular, reproducible circadian rhytms. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
17 Samples
Download data: CEL
Series
Accession:
GSE55372
ID:
200055372
2.

Temperature-dependent transcriptional response under anaerobic C and N limitations in Yeast

(Submitter supplied) The global transcriptional response of Saccharomyces cerevisiae was investigated in low temperature chemostat cultures grown in carbon or nitrogen limitation. During steady state chemostats, the growth rates and in vivo fluxes were kept constant however the growth-limiting nutrient was significantly higher at 12oC than at 30oC and had significant effects on transcriptional responses. Growth at 12oC resulted in a rearrangement of transporters for the limiting nutrient, where hexose transporters (HXTs) and ammonium permeases (MEPs) were differentially expressed in cultures grown at 30oC in carbon and nitrogen limitations, respectively. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
12 Samples
Download data: CEL, EXP
Series
Accession:
GSE6190
ID:
200006190
3.

Quantitative proteomics of anaerobic and aerobic yeast cultures

(Submitter supplied) Saccharomyces cerevisiae is unique among yeasts for its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. more...
Organism:
Saccharomyces cerevisiae
Type:
Other
Platform:
GPL4992
1 Sample
Download data: XLS
Series
Accession:
GSE7365
ID:
200007365
4.

Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures

(Submitter supplied) Extremely low specific growth rates (below 0.01 h-1) represent a largely unexplored area of microbial physiology. Retentostats enable controlled, energy-limited cultivation at near-zero specific growth rates while avoiding starvation. In this study, anaerobic, glucose-limited retentostats were used to analyze physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
11 Samples
Download data: CEL
Series
Accession:
GSE22574
ID:
200022574
5.

Transcriptional responses to lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae

(Submitter supplied) Raw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5. Keywords: response to lactic acid
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
12 Samples
Download data: CEL, CHP
Series
Accession:
GSE10066
ID:
200010066
6.

Transcriptional response in laboratory and wine strains of S. cerevisiae to growth temperature

(Submitter supplied) Laboratory strains of Saccharmoyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected over hundreds of years on the basis of their adaptation to stringent environmental conditions and the organoleptic properties they confer to wine. Here, we applied a two-factor design to study the response of a standard laboratory strain, CEN.PK.113-7D, and an industrial wine yeast-strain, EC1118, to growth temperature at 15°C and 30°C under 12 nitrogen-limited, anaerobic steady-state chemostat cultures. more...
Organism:
Schizosaccharomyces pombe; Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL2529
12 Samples
Download data: CEL
Series
Accession:
GSE12232
ID:
200012232
7.

The regulation of reserve carbohydrate metabolism in S cerevisiae in response to nutrient availability

(Submitter supplied) In Saccharomyces cerevisiae, glycogen and trehalose are important reserve carbohydrates that accumulate under nutrient limitation in batch cultures. An inherent draw-back of batch studies is that specific growth rate and substrate and product concentrations are variable over time and between cultures. The aim of this present study was to identify the nutritional requirements associated with high accumulation of reserve carbohydrates at a fixed specific growth rate (0.10 h-1) in anaerobic chemostat cultures that were limited by one of five different nutrients (carbon, nitrogen, sulfur, phosphorus or zinc). more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
21 Samples
Download data: CEL, CHP, EXP
Series
Accession:
GSE15465
ID:
200015465
8.

Physiology of S. cerevisiae during aerobic cultivation at near-zero specific growth rates

(Submitter supplied) Saccharomyces cerevisiae is an established microbial host for the production of non-native compounds. The synthesis of these compounds typically demands energy and competes with growth for carbon and energy substrate. Uncoupling product formation form growth would benefit product yields and decrease formation of by-product biomass. Studying non-growing metabolically-active yeast cultures provides a first step towards developing S. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
13 Samples
Download data: CEL
Series
Accession:
GSE77842
ID:
200077842
9.

Transcriptome-based characterization of the interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat co-cultures

(Submitter supplied) The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium Lb. bulgaricus . S. cerevisiae and Lb. bulgaricus are both frequently encountered in kefir, a fermented dairy product (25). In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together (19,26-30). more...
Organism:
Lactobacillus delbrueckii subsp. bulgaricus; Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
6 Samples
Download data: CEL
Series
Accession:
GSE45776
ID:
200045776
10.

Transcriptome-based characterization of the interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat co-cultures

(Submitter supplied) The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium L. bulgaricus . S. cerevisiae and L. bulgaricus are both frequently encountered in kefir, a fermented dairy product. In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together. more...
Organism:
Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365; Saccharomyces cerevisiae; Lactobacillus delbrueckii subsp. bulgaricus
Type:
Expression profiling by array
Platform:
GPL16855
4 Samples
Download data: TXT
Series
Accession:
GSE45623
ID:
200045623
11.

Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain

(Submitter supplied) Saccharomyces cerevisiae has become a popular host for production of non-native compounds. The metabolic pathways involved generally require a net input of energy. To maximize the ATP yield on sugar in S. cerevisiae, industrial cultivation is typically performed in aerobic, sugar-limited fed-batch reactors which, due to constraints in oxygen transfer and cooling capacities, have to be operated at low specific growth rates. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
16 Samples
Download data: CEL
Series
Accession:
GSE65942
ID:
200065942
12.

Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae

(Submitter supplied) Prolonged cultivation of Saccharomyces cerevisiae in aerobic, glucose-limited chemostat cultures (dilution rate, 0·10 h–1) resulted in a progressive decrease of the residual glucose concentration (from 20 to 8 mg l–1 after 200 generations). This increase in the affinity for glucose was accompanied by a fivefold decrease of fermentative capacity, and changes in cellular morphology. These phenotypic changes were retained when single-cell isolates from prolonged cultures were used to inoculate fresh chemostat cultures, indicating that genetic changes were involved. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
6 Samples
Download data: CEL, EXP
Series
Accession:
GSE8898
ID:
200008898
13.

Genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations

(Submitter supplied) Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO2-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO2 and 21% O2. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Dataset:
GDS2969
Platform:
GPL90
18 Samples
Download data: CEL, EXP
Series
Accession:
GSE8900
ID:
200008900
14.
Full record GDS2969

Carbon dioxide effect on fermenting yeast: dose response

Analysis of chemostat cultures sparged with 79% or 100% carbon dioxide (CO2). During fermentation and ethanol production, CO2 is produced, saturating the fermentative broth. Results provide insight into the mechanisms underlying CO2 stress.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array, count, 4 dose, 2 growth protocol sets
Platform:
GPL90
Series:
GSE8900
18 Samples
Download data: CEL, EXP
DataSet
Accession:
GDS2969
ID:
2969
15.

Saccharomyces cerevisiae chemostat steady state microarray compendium

(Submitter supplied) Background Microorganisms adapt their transcriptome by integrating multiple chemical and physical signals from their environment. Shake-flask cultivation does not allow precise manipulation of individual culture parameters and therefore precludes a quantitative analysis of the (combinatorial) influence of these parameters on transcriptional regulation. Steady-state chemostat cultures, which do enable accurate control, measurement and manipulation of individual cultivation parameters (e.g. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
170 Samples
Download data: CEL, CHP, EXP
Series
Accession:
GSE11452
ID:
200011452
16.

leu3p dependent transcription

(Submitter supplied) Transcriptional regulation of branched-chain amino acid metabolism in Saccharomyces cerevisiae involves two key regulator proteins, Leu3p and Gcn4p. Leu3p is a pathway-specific regulator, known to regulate six genes involved in branched-chain amino acid metabolism and one gene in nitrogen assimilation. Gcn4p is a global regulator, involved in the general response to amino acid and purine starvation. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Dataset:
GDS1103
Platform:
GPL90
12 Samples
Download data
Series
Accession:
GSE2076
ID:
200002076
17.
Full record GDS1103

leu3 mutant expression profiles

Analysis of leu3 mutant grown in either limited ethanol or limited ammonium media. Leu3p regulates a gene involved in nitrogen assimilation and six genes involved in branched chain amino acid metabolism. Results provide insight into the role of Leu3p in gene regulation.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array, count, 2 genotype/variation, 2 growth protocol sets
Platform:
GPL90
Series:
GSE2076
12 Samples
Download data
DataSet
Accession:
GDS1103
ID:
1103
18.

Transcriptional response to weak organic acids in chemostat cultures of Saccharomyces cerevisiae

(Submitter supplied) Raw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with various weak organic acids Keywords: response to weak organic acids
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Dataset:
GDS2925
Platform:
GPL90
15 Samples
Download data: CEL
Series
Accession:
GSE5926
ID:
200005926
19.
Full record GDS2925

Various weak organic acids effect on anaerobic yeast chemostat cultures

Analysis of anaerobic chemostat cultures of Saccharomyces cerevisae exposed to one of several weak organic acids. Weak organic acids are used as preservatives in food and beverages. Yeasts are able to proliferate at the maximum legal dosage of such preservatives.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array, count, 5 stress sets
Platform:
GPL90
Series:
GSE5926
15 Samples
Download data: CEL
DataSet
Accession:
GDS2925
ID:
2925
20.

Adaptation of S. cerevisiae to fermentative conditions

(Submitter supplied) The capacity of respiring cultures of Saccharomyces cerevisiae to instantaneously switch to fast alcoholic fermentation upon a transfer to anaerobic sugar-excess conditions is a key characteristic of Saccharomyces cerevisiae in many of its industrial applications. This transition was studied by exposing aerobic glucose-limited chemostat cultures grown at a low specific growth rate to two simultaneous perturbations: oxygen depletion and relief of glucose limitation. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
13 Samples
Download data: CEL, CHP, EXP
Series
Accession:
GSE8187
ID:
200008187
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=5|blobid=MCID_665d5267861d2b631c64409b|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center