U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
32 Samples
Download data: TXT
Series
Accession:
GSE103536
ID:
200103536
2.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [ATAC-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
7 Samples
Download data: BED
Series
Accession:
GSE103535
ID:
200103535
3.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [RNA-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing
4 related Platforms
25 Samples
Download data: TXT
Series
Accession:
GSE103509
ID:
200103509
4.

Global transcriptome profiling of Oct4/Klf4/Sox2 (3Factor, 3F) + IL6 iPS clones derived from mouse embryonic fibroblasts.

(Submitter supplied) We used heterokaryon cell fusion based reprogramming and identified the cytokine IL6 as a potential regulator of reprogramming to pluripotency. We generated iPS clones using the four reprogramming factors (4F) Oct4, Klf4, Sox2, and c-Myc. In addition, iPS clones were generated using only three factors (3F: Oct4, Klf4, amd Sox2) with the addition of the cytokine IL6 to reprogramming culture conditions. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
8 Samples
Download data: TXT
Series
Accession:
GSE46104
ID:
200046104
5.

Excluding Oct4 from Yamanaka cocktail unleashes the developmental potential of iPSCs

(Submitter supplied) Oct4 is widely considered the most important among the four Yamanaka reprogramming factors. Here we show that the combination of Sox2, Klf4, and cMyc (SKM) suffices for reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs). Simultaneous induction of Sox2 and cMyc in fibroblasts triggers immediate retroviral silencing, which explains the discrepancy with previous studies that attempted but failed to generate iPSCs without Oct4 using retroviral vectors. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL21493
86 Samples
Download data: XLSX
Series
Accession:
GSE137001
ID:
200137001
6.

Global gene expression analyses of paused iPSCs

(Submitter supplied) Low Klf4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of Klf4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path towards pluripotency. Paused iPSCs with different Klf4 expression levels remain at distinct intermediate stages of reprogramming.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
24 Samples
Download data: TXT
Series
Accession:
GSE56406
ID:
200056406
7.

Expression data from iPSCs generated with Yamanaka factors and miR-302 cluster

(Submitter supplied) Baseline gene expression of adipose stem cell derived iPSCs generated by lentiviral Yamanaka 4 factors. We used microarrays to analyze the global gene expression of hACS derived iPSCs with KMOS and KMOS+miR-302.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
8 Samples
Download data: CEL
Series
Accession:
GSE37896
ID:
200037896
8.

Recovery of genomic stability by ZSCAN10 in induced pluripotent stem cells from aged donors

(Submitter supplied) Induced pluripotent stem cells (iPSC), which are generated from a patient’s own cells and used to produce transplantable tissues, may particularly benefit older patients who are more likely to suffer from degenerative diseases. However, iPSC generated from aged donors (A-iPSC) exhibit higher genomic instability, defects in apoptosis, and a blunted DNA damage response compared to iPSC generated from younger donors (Y-iPSC). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
14 Samples
Download data: TXT
Series
Accession:
GSE85365
ID:
200085365
9.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL16791 GPL10558
95 Samples
Download data
Series
Accession:
GSE81900
ID:
200081900
10.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
84 Samples
Download data: PDF, TXT
Series
Accession:
GSE81899
ID:
200081899
11.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
11 Samples
Download data: TXT
Series
Accession:
GSE81891
ID:
200081891
12.

C/EBPα poises B cells for rapid reprogramming into iPS cells

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL13912
48 Samples
Download data: BED, TSV, TXT
Series
Accession:
GSE52397
ID:
200052397
13.

C/EBPα poises B cells for rapid reprogramming into iPS cells [RNA-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: TSV
Series
Accession:
GSE52396
ID:
200052396
14.

C/EBPα poises B cells for rapid reprogramming into iPS cells [ChIP-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED
Series
Accession:
GSE52373
ID:
200052373
15.

C/EBPα poises B cells for rapid reprogramming into iPS cells [array]

(Submitter supplied) Somatic cell reprogramming into pluripotent stem cells induced by Oct4, Sox2, Klf4 and Myc (OSKM) occurs at low frequencies and with a considerable delay involving a stochastic phase. In contrast, transdifferentiation of B cells into macrophages induced by C/EBPα is fully efficient and initiated almost immediately. We now discovered that a pulse of C/EBPα in B cell precursors followed by OSKM expression dramatically enhances reprogramming to pluripotency, overcoming the stochastic phase. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
44 Samples
Download data: TXT
Series
Accession:
GSE46321
ID:
200046321
16.

The Nuclear Receptor Nr5a2 can replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data
Series
Accession:
GSE19023
ID:
200019023
17.

Global gene expression analysis of OSKM / N2SKM- infected MEFs over time course

(Submitter supplied) We used microarrays to detail the global gene expression profiles of OSKM and N2OSKM-infected MEFs over a time course (3, 7, 11 dpi).
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19022
ID:
200019022
18.

Global gene expression analyses of the Nr5a2 reprogrammed cells

(Submitter supplied) We used microarrays to detail the global programme of gene expression of ESCs, Nr5a2 reprogrammed iPSC lines and MEFs.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19021
ID:
200019021
19.

Genome-wide mapping of Nr5a2 in mouse embryonic stem cells

(Submitter supplied) Nr5a2 (also known as liver receptor homolog-1, Lrh-1) has been shown to bind both the proximal enhancer and proximal promoter regions of Pou5f1 and regulate Pou5f1 in the epiblast stage of mouse embryonic development (Gu et al., 2005). Nr5a2-null embryos display a loss of Oct4 expression in the epiblasts (Gu et al., 2005) and die between E6.5 and E7.5 (Gu et al., 2005; Pare et al., 2004). To identify the targets of Nr5a2, we generated a stable ES cell-line that expresses HA-tagged Nr5a2. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
2 Samples
Download data: BED, TXT
Series
Accession:
GSE19019
ID:
200019019
20.

OSKM induce extraembryonic endoderm stem (iXEN) cells in parallel to iPS cells

(Submitter supplied) While the reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, they also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established alongside the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
17 Samples
Download data: TXT
Series
Accession:
GSE77550
ID:
200077550
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_6630cfc6f43648671503867a|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center