U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 16

1.

Circadian regulation in rat Lung

(Submitter supplied) Circadian rhythms are oscillations with a periodicity of 24 hours that are controlled by an endogenous clock and are observed in virtually all aspects of mammalian function from expression of genes to complex physiological processes. The master clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus and controls peripheral clocks present in other parts of the body . more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Platform:
GPL1355
54 Samples
Download data: CEL, CHP
Series
Accession:
GSE25612
ID:
200025612
2.

Circadian regulation in rat abdominal adipose tissue

(Submitter supplied) Circadian rhythms are oscillations with a periodicity of 24 hours that are controlled by an endogenous clock and are observed in virtually all aspects of mammalian function from expression of genes to complex physiological processes. The master clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus and controls peripheral clocks present in other parts of the body. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Platform:
GPL1355
52 Samples
Download data: CEL, CHP
Series
Accession:
GSE20635
ID:
200020635
3.

Cicardian regulation in rat liver

(Submitter supplied) In intact animals, time of drug administration may be an important factor influencing drug response. Our general goal seeks to incorporate circadian time into the study of corticosteroid regulated gene expression. Since levels of endogenous steroid exhibit circadian fluctuations, it is our hypothesis that the expression of genes controlled by corticosteroids either directly or indirectly, will also exhibit a circadian pattern in normal animals. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Dataset:
GDS3084
Platform:
GPL341
54 Samples
Download data: CEL
Series
Accession:
GSE8988
ID:
200008988
4.
Full record GDS3084

Liver during a 24-hour (12 hour light:12 hour dark) cycle

Analysis of livers of Wistar animals during a 24-hour period, from zeitgeber time (ZT) 0.25 to ZT 23.75. Results provide insight into baseline patterns of gene expression in normal liver within the 24 hour circadian cycle.
Organism:
Rattus norvegicus
Type:
Expression profiling by array, count, 18 time sets
Platform:
GPL341
Series:
GSE8988
54 Samples
Download data: CEL
5.

Circadian regulation in rat skeletal muscle

(Submitter supplied) In intact animals, time of drug administration may be an important factor influencing drug response. Our general goal seeks to incorporate circadian time into the study of corticosteroid regulated gene expression. This study is designed to examine fluctuations in gene expression in skeletal muscle within the 24 hour circadian cycle in normal animals. Circadian time is relevant to designing optimal corticosteroid dosing regimens. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Dataset:
GDS3083
Platform:
GPL341
54 Samples
Download data: CEL
Series
Accession:
GSE8989
ID:
200008989
6.
Full record GDS3083

Skeletal muscle during a 24-hour (12 hour light:12 hour dark) cycle

Analysis of gastrocnemius muscles of Wistar animals during a 24-hour period, from zeitgeber time (ZT) 0.25 to ZT 23.75. Results provide insight into baseline patterns of gene expression in normal skeletal muscle within the 24 hour circadian cycle.
Organism:
Rattus norvegicus
Type:
Expression profiling by array, count, 18 time sets
Platform:
GPL341
Series:
GSE8989
54 Samples
Download data: CEL
7.

Circadian Profiling of the Transcriptome in Immortalized Rat SCN Cells: Comparison to Long-Evans Rat SCN

(Submitter supplied) To determine whether immortalized cells derived from the rat SCN (SCN 2.2) retain intrinsic rhythm-generating properties characteristic of the SCN, oscillatory properties of the SCN2.2 transcriptome were analyzed and compared to those found in the rat SCN in vivo using rat U34A Affymetrix GeneChips. In this comparison, adult male Long-Evans rats (175-200g; N=45) were housed under a standard 12h light:12h dark photoperiod (LD 12:12; lights-on at 0600 hr). more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Platform:
GPL85
18 Samples
Download data
Series
Accession:
GSE1673
ID:
200001673
8.

Circadian Profiling of the Transcriptome in Immortalized Rat SCN Cells (3 biological replicates)

(Submitter supplied) To determine whether immortalized cells derived from the rat SCN (SCN 2.2) retain intrinsic rhythm-generating properties characteristic of the SCN, oscillatory properties of the SCN2.2 transcriptome were analyzed and compared to those found in the rat SCN in vivo using rat U34A Affymetrix GeneChips. SCN2.2 cells were expanded in 6-well plates. At 6-hour interval across 2 circadian cycles, cells from single 6-well plates were harvested and pooled for total RNA extraction. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Platform:
GPL85
27 Samples
Download data: CEL, EXP, RPT
Series
Accession:
GSE1654
ID:
200001654
9.

Circadian Transcriptome of the Chicken Pineal In Vitro

(Submitter supplied) Chick pinealocytes exhibit all the characteristics of a complete circadian system, comprising photoreceptive inputs, molecular clockworks and an easily measured rhythmic output, melatonin biosynthesis. We used microarray analysis to investigate the expression of approximately 8000 genes within cultured pinealocytes subjected to both LD and DD cycles. We report that a reduced subset of genes were rhythmically expressed in vitro compared to those previously published in vivo, and that gene expression rhythms were lower in amplitude, although the functional distribution of the rhythmic transcriptome was largely similar. more...
Organism:
Gallus gallus
Type:
Expression profiling by array
Platform:
GPL3731
196 Samples
Download data
Series
Accession:
GSE5292
ID:
200005292
10.

Achilles-mediated and sex-specific regulation of circadian mRNA rhythms in Drosophila

(Submitter supplied) The circadian clock is an evolutionarily conserved mechanism that drives rhythmic expression of downstream genes. The core circadian clock drives the expression of clock-controlled genes either directly or indirectly, which in turn play critical roles in carrying out many rhythmic physiological processes. Nevertheless, the molecular mechanisms by which clock output genes orchestrate rhythmic signals from the brain to peripheral tissues are largely unknown. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21306
96 Samples
Download data: TXT
Series
Accession:
GSE120100
ID:
200120100
11.

Circadian Profiling of NIH3T3 Fibroblasts: Comparison with Rhythmic Gene Expression in SCN2.2 Cells and the Rat SCN

(Submitter supplied) To screen for specific circadian outputs that may distinguish the pacemaker in the mammalian suprachiasmatic nucleus (SCN) from peripheral-type oscillators in which the canonical clockworks are similarly regulated in a circadian manner, the rhythmic behavior of the transcriptome in forskolin-stimulated NIH/3T3 fibroblasts was analyzed and compared to that found in the rat SCN in vivo and SCN2.2 cells in vitro. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL81
27 Samples
Download data: CEL
Series
Accession:
GSE5810
ID:
200005810
12.

Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames

(Submitter supplied) Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around-the-clock and at high temporal and nucleotide resolution. Transcriptome-wide, we discovered extensive rhythms in ribosome occupancy, and identified a core set of ≈150 mRNAs subject to particularly robust daily changes in translation efficiency. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
48 Samples
Download data: TXT
Series
Accession:
GSE67305
ID:
200067305
13.

Deep sequencing the circadian and light-dependent transcriptome of Drosophila brain

(Submitter supplied) Eukaryotic circadian clocks include transcriptional/translational feedback loops that drive 24-hour rhythms of transcription.These transcriptional rhythms underlie oscillations of protein abundance, thereby mediating circadian rhythms of behavior, physiology, and metabolism. Numerous studies over the last decade have employed microarrays to profile circadian transcriptional rhythms in various organisms and tissues. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13304
24 Samples
Download data: BED, BEDGRAPH, TXT
Series
Accession:
GSE36108
ID:
200036108
14.

Deep sequencing the circadian transcriptome of Drosophila brain

(Submitter supplied) RNAseq transcriptional profiling of Drosophila brains from wildtype, and period loss-of-function animals with time points taken over two days.
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platform:
GPL11203
24 Samples
Download data: BED, BEDGRAPH, TXT
Series
Accession:
GSE29972
ID:
200029972
15.

RNA-sequencing of Early vs Late Mouse Pancreas Reentrainment

(Submitter supplied) The objectives of this study was to understand the implication of early (day 1:ZT8) vs late (day 8 [for female]/day 9 [for males]:ZT176/200) reentrainment in mouse pancreas following a chronic (1-month) phase shift protocol. 4-6 week old mice underwent 4 weeks of either a normal circadian light-dark cycle or a circadian disrupted light-dark cycle whereby mice were phase shifted forward 8 hours every 2-3 days. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
24 Samples
Download data: XLSX
Series
Accession:
GSE165199
ID:
200165199
16.

RNA-sequencing of Chronic Phase Shift Protocol on Murine Pancreas

(Submitter supplied) The objective of this study was to understand the long-term effects of a chronic phase shift protocol on the pancreatic transcriptome. A total of 144 wild-type C57Bl/6J 4-6 week old mice were housed under normal circadian conditions or disrupted using a chronic phase shift protocol whereby the light-dark cycle is advanced 8 hour every 2-3 days for 4 weeks. 12 hours prior to sacrafice mice were normalized under normal circadian conditions. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
48 Samples
Download data: XLSX
Series
Accession:
GSE165198
ID:
200165198
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=5|blobid=MCID_662da642862bea0a3f187828|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center